Page 8 - UNI III TRIGONOMETRIA SEC 5TO
P. 8
Trigonometría 5° UNI
19
Semana
Definición: Son ecuaciones donde la variable debe de encontrarse afectada por algún operador trigonométrico y lo
debe ser Identidad Trigonométrica.
Ecuación Elemental:
Son ecuaciones reducidas que nos permite encontrar la solución de la ecuación y son de la forma:
Sen(Bx + C) = n ⇔ -1 ≤ n ≤ 1
Cos(Bx + C) = n ⇔ -1 ≤ n ≤ 1
Tg(Bx + C) = n ⇔ n ∈ ℝ
Calculo de las menores soluciones positivas:
Para determinar las menores soluciones positivas aplicamos el criterio de resolución al primer cuadrante a partir
del siguiente cuadro:
180º -
-
180º + 360º -
+ 2 -
Ejemplo:
3
1. Senx =
2
→ x ∈ IC y IIC
→ x = 60° ∨ x = 180° - 60°
∴ x = 60°; 120°
2
2. Cosx =
2
→ x ∈ IC y IVC
→ x = 45° ∨ x = 360° - 45°
∴ x = 45°; 315°
EXPRESIONES GENERALES
PARA EL SENO
Si: Senx = Sen
x = kπ + (-1)
k
x = 180°k + (-1)
k
PARA EL COSENO
Si: Cosx = Cos
x = 2kπ ±
x = 360°k ±
PARA LA TANGENTE
Si: Tgx = Tg
x = kπ +
x = 180°k +
(k ∈ ℤ)
Compendio -63-