Page 28 - Internsip@TechCiti
P. 28

  Principles of regression


                         Splitting the data into training, validation and testing datasets



                         Understanding Overfitting (Variance) vs Underfitting (Bias)


                         Generalization error and Regularization techniques


                         Introduction to Simple Linear Regression


                         Heteroscedasticity / Equal Variance



                         LINE assumption


                         Collinearity (Variance Inflation Factor)


                         Linearity



                         Normality


                         Multiple Linear Regression


                         Model Quality metrics


                         Deletion diagnostics



                         Logistic Regression


                         Multiple Logistic Regression


                         Confusion matrix



                         False Positive, False Negative


                         True Positive, True Negative


                         Sensitivity, Recall, Specificity, F1


                         Receiver operating characteristics curve (ROC curve)
   23   24   25   26   27   28   29   30   31   32   33