Page 29 - Internsip@TechCiti
P. 29

  Lift charts and Gain charts


                         Regularization Techniques



                         Lasso and Ridge Regressions


                         Logit and Log Likelihood


                         Category Baselining


                         Modeling Nominal categorical data



                         Data Mining Unsupervised - Clustering


                         Hierarchial


                         Supervised vs Unsupervised learning



                         Data Mining Process


                         Measure of distance


                         Numeric - Euclidean, Manhattan, Mahalanobis


                         Categorical - Binary Euclidean, Simple Matching Coefficient,


                          Jaquard’s Coefficient


                         Types of Linkages


                         Single Linkage / Nearest Neighbour


                         Complete Linkage / Farthest Neighbour



                         Average Linkage


                         Centroid Linkage


                         Hierarchical Clustering / Agglomerative Clustering.



                         Non-clustering
   24   25   26   27   28   29   30   31   32   33   34