Page 11 - 3_Dinda Erliananda_Counting Principles
P. 11
Dinda Erliananda Teaching Materials – SMA Class XII – Enumeration Rules
Answer:
n= 4 i.e. {1, 2, 3, 4}
P(4, 4) = 4! = 4·3·2.1 = 24.
So, there are 24 vehicles.
3. Permutations with Some Different Elements
Permutations P(n, n) as in the example above shows that from the n available
elements, all of them are taken to be arranged. From n elements, an arrangement with
only r elements can also be made, taking into account the order.
We can write the three members of the set { } into 24 sequences as
follows.
Each sequence or arrangement of the letters is called a set permutation
{ }.
A permutation is an arbitrary arrangement of the elements of a set in order.
The number of permutations obtained from filling places.
Theorem 2
The number of permutations of r elements taken from n different elements is for
.
read permutation level r of n.
Proof (1):
In a set, the number of permutations of r elements taken from n different elements is
written with the notation . or nPr.
( )
( )
7