Page 45 - AI & Machine Learning for Beginners: A Guided Workbook
P. 45

Questions (Data Collection & Features): What two








                features are used in this example to distinguish between
                beer and wine?
                Follow-up: Why might these particular features be useful for
                classification?
         ☐ ________________________________________________________________________
         ☐ ________________________________________________________________________


         ☐ ________________________________________________________________________

                   Question (Data Preparation): Explain the importance








                of shuffling and splitting the data into training and test sets.
                How does this help improve the model’s accuracy?
         ☐ ________________________________________________________________________
         ☐ ________________________________________________________________________
         ☐ ________________________________________________________________________


                   Question (Model Training): In the linear model








                represented by the equation y = m*x + b, what do the
                parameters m and b represent in the context of the training
                process?
                Follow-up: How does the iterative adjustment of these
                parameters improve the model’s predictions?
         ☐ ________________________________________________________________________

         ☐ ________________________________________________________________________

         ☐ ________________________________________________________________________


                                        43
   40   41   42   43   44   45   46   47   48   49   50