Page 358 - Veterinary Toxicology, Basic and Clinical Principles, 3rd Edition
P. 358

Toxicity of Nanomaterials Chapter | 18  325




  VetBooks.ir  low-purity fullerenes were shown to be toxic to aquatic  Hecht, S.S., 2005. Carcinogenicity studies of inhaled cigarette smoke in
                                                                                         new.
                                                                                     and
                                                                                              Carcinogenesis.
                                                                  laboratory animals: old
                                                                                                          26 (9),
             organisms (Hull et al., 2009). Nanotechnology may lead
                                                                  1488 1492.
             to novel types of pollutant effects. Organisms may not
             have the ability to metabolize and detoxify ENMs, using  Hoet, P.H.M., Bruski-Hohlfeld, I., Salata, O.V., 2004. Nanoparticles
                                                                  known and unknown health risks. J. Nanobiotechnol. 2 (12), 1 15.
             pathways evolved to prevent poisoning from chemicals in
                                                                Hull, M.S., Kennedy, A.J., Steevens, J.A., et al., 2009. Release of metal
             solution. The diversity of environmental conditions and
                                                                  impurities from carbon nanomaterials influences aquatic toxicity.
             possible ecological impacts pose additional challenges to
                                                                  Environ. Sci. Technol. 43 (11), 4169 4174.
             ecotoxicological risk assessment. Data from diverse test
                                                                Iseli, A., Kwen, H., Rajagopalan, S., 2009. Nanomaterials for
             organisms are needed, and a general scarcity of data is  Environmental Remediation. In: Klabunde, K.J., Richards, R.M.
             still a major concern (Cattaneo et al., 2009).       (Eds.), Nanoscale Materials in Chemistry, second ed. John Wiley &
                                                                  Sons, Inc, Hoboken.
                                                                Kamawatawong, T., Kawamura, N., Okajima, M., et al., 2005. Acute
                                                                  pulmonary toxicity caused by exposure to colloidal silica: particle
             REFERENCES
                                                                  size dependent pathological changes in mice. Toxicol. Pathol. 33
             Baun, A., Sorensen, S.N., Rasmussen, R.F., et al., 2008. Toxicity and  (7), 745 751.
                bioaccumulation of xenobiotic organic compounds in the presence  Langmuir, D., 1965. Stability of carbonates in the system MgO-CO 2 -
                of aqueous suspensions of aggregates of nano-C 60 . Aquat. Toxicol.  H 2 O. J. Geol. 73, 730 754.
                86 (3), 379 387.                                Larsson, B.M., Larsson, K., Malmberg, P., et al., 2002. Airways inflam-
             Blandford, T.B., Seamon, P.J., Hughes, R., et al., 1975. A case of polyte-  mation after exposure in a swine confinement building during clean-
                trafluoroethylene poisoning in cockatiels accompanied by polymer  ing procedure. Am. J. Ind. Med. 41 (4), 250 258.
                fume fever in the owner. Vet. Rec. 96 (8), 175 178.  Lee, K.P., Seidel, W.C., 1991. Pulmonary response to perfluoropolymer
             Borm, P., Klaessig, F.C., Landry, T.D., et al., 2006. Research strategies  fume and particles generated under various exposure conditions.
                for safety evaluation of nanomaterials. Part VI. Characterization of  Fundam. Appl. Toxicol. 17 (2), 254 269.
                nanoscale particles for toxicological evaluation. Toxicol. Sci. 90 (2),  Mathisen, T., Von Essen, S.G., Wyatt, T.A., et al., 2004. Hog barn dust
                23 32.                                            extract augments lymphocyte adhesion to human airway epithelial
             Brunner, T.I., Wick, P., Manser, P., et al., 2006. In vitro cytotoxicity of  cells. J. Appl. Physiol. 96 (5), 1738 1744.
                oxide nanoparticles: comparison to asbestos, silica and the effect of  Maynard, A.D., Warheit, D.B., Philbert, M.A., 2011. The new toxicology
                particle solubility. Environ. Sci. Technol. 40 (14), 4374 4381.  of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci.
             Caballero-Diaz, E., Cases, M.V., 2016. Analytical methodologies for  120 (Suppl. 1), 109 129.
                nanotoxicity assessment. Trends Anal. Chem. 84 (A), 160 171.  MINChar Initiative, 2008. Recommended Minimum Physical and
             Calderon-Garciduenas, L., Gambling, T.M., Acuna, H., et al., 2001a.  Chemical  Parameters  for  Characterizing  Nanomaterials  on
                Canines as a sentinel species for assessing chronic exposures to air  Toxicology Studies. Available: ,http://characterizationmatters.org/
                pollutants: part 2. Cardiac pathology. Toxicol. Sci. 61 (2), 356 367.  parameters/..
             Calderon-Garciduenas, L., Mora Tiscareno, A., Fordham, L.A., et al.,  Mitchell, L.A., Gao, J., Wal, R.V., et al., 2007. Pulmonary and systemic
                2001b. Canines as sentinel species for assessing chronic exposures  immune response to inhaled multiwalled carbon nanotubes. Toxicol.
                to air pollutants: part 1. Respiratory pathology. Toxicol. Sci. 61 (2),  Sci. 100 (1), 203 214.
                342 355.                                        Nel, A., Xia, T., Madler, L., et al., 2006. Toxic potentials of materials at
             Cattaneo, A.G., Gornati, R., Chriva-Internati, M., et al., 2009.  the nanolevel   review. Science. 311 (5761), 622 627.
                Ecotoxicology of nanomaterials: the role of invertebrate testing. ISJ.  Ngo, M.A., Smiley-Jewell, S., Aldous, P., et al., 2008. Nanomaterials
                6 (1), 78 97.                                     and the environment. In: Grassian, V.H. (Ed.), Nanoscience and
             Coggins, C.R., 2002. A minireview of chronic animal inhalation studies  Nanotechnology: Environmental and Health Impacts. John Wiley
                with mainstream cigarette smoke. Inhal. Toxicol. 14 (10),  and Sons Ltd., Hoboken, pp. 3 18.
                991 1002.                                       Oberdo ¨rster, G., 2010. Safety assessment for nanotechnology and nano-
             De Haar, C., Hassing, I., Bol, M., et al., 2005. Ultrafine carbon black  medicine: concepts of nanotoxicology. J. Int. Med. 267 (1), 89 105.
                particles cause early airway inflammation and have adjuvant activity  Oberdorster, G., Gelein, R.M., Ferin, J., et al., 1995. Association of par-
                in a mouse allergic airway disease model. Toxicol. Sci. 87 (2),  ticulate air pollution and acute mortality: involvement of ultrafine
                409 418.                                          particles? Inhal. Toxicol. 7 (1), 111 124.
             Ding, L., Stilwell, J., Zhang, T., et al., 2005. Molecular characterization  Pickrell, J.A., Erickson, L.E., Klabunde, K.J., 2009. Toxicity of Inhaled
                of the cytotoxic mechanism of multiwall carbon nanotubes and  Nanomaterials. In: Klabunde, K.J., Richards, R.M. (Eds.), Nanoscale
                nano-onions on human skin fibroblast. Nano Lett. 5 (12),  Materials in Chemistry, second ed. John Wiley & Sons, Inc,
                2448 2464.                                        Hoboken, NJ.
             Fitzgerald, K.T., Vera, R., 2006. Smoke inhalation. In: Peterson, M.E.,  Pickrell, J.A., Gakhar, G., Mulukutla, R.S., et al., 2004. Safety of glycol,
                Talcott, P.A. (Eds.), Small Animal Toxicology. Elsevier-Saunders,  diesel fuel or combustion smokes in the presence of magnesium of
                St Louis, MO, pp. 439 458.                        titanium dioxide clearing agents. Progr. 39 th  Midwest Reg. Meet.
             Fu, P.F., Xia, Q., Hwang, H., et al., 2014. Mechanisms of nanotoxicity:  (MWRM) Am. Chem. Soc.183.
                generation of reactive oxygen species. J. Food Drug Anal. 22 (1),  Pickrell, J.A., Van der Merwe, D., Erickson, L.E., et al., 2010.
                64 75.                                            Comparative pulmonary toxicity of metal oxide nanoparticles.
   353   354   355   356   357   358   359   360   361   362   363