Page 108 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 108

−1
                                                       −1     −1   )  and 2G a ,
                                                                            −1
                          2
                      1
                                  3
         The matrices W , W  and W  are the product of (Z¢R Z + G a bull       par
            −1           − 1
         Z¢R Z, and  0.5G ∑a prog , respectively. Using Eqn 5.19, the contributions from
         different sources of information from different countries to the MACE of a bull can
         be computed.
            If the progeny in Eqn 5.19 is not a direct progeny of the bull but a maternal
                                                                     4
                                           4
                                     equals   if mate (sire) is known or   if unknown.
         grandson of the bull then a prog  11                        15
         Then Eqn 5.19 becomes:
                −1     −1   )a ˆ    −1  (a ˆ  + 0.5(a ˆ  + g)) + Z′R Z(CD)
                                                               −1
                                                       ˆ
            (Z′R Z + G a  bull  bull  = G a par  sire  mgs
                                     −1      (a   - 0.5a  )
                                              ˆ
                                                      ˆ
                                  + G ∑a  prog  prog   mate
                                           and 0.5â   = 0.5â , the sire of the progeny.
                              par
         and a bull  now equals 2a  + 0.25a prog  mate     s
         The above can be expressed as:
                −1     −1            −1           −1
                          bull  bull  a par
            (Z′R Z + G a    )a ˆ   = 2G  (PA) + (Z′R Z)CD
                                         −1
                                                   ˆ
                                              prog  prog   mate
                                  + 0.25G ∑a     (4a   - 2a ˆ  )
                                           −1     −1    −1
                                                     bull
            Pre-multiplying both sides by (Z′R Z + G a  )  gives the same equation as
         Eqn 5.19 but with:
            PC = ∑  a prog  a ( 4ˆ prog  − 2ˆ a ) ∑ a prog                  (5.20)
                                  mate
         and W  now equals ( ′  −1   −1   ) (0.25  G −1 ∑  )
                                           −1
                           ZR Z
              3                   + G a bull           a prog
            The use of Eqn 5.19 to partition proofs from MACE is illustrated for two
         bulls, one with no progeny and another with a maternal grandson. First, consider
         bull 3 in Example 5.5 that has DRPs only in country 1 and has no progeny. Therefore,
         CD  for bull 3 in country i is:
            3i
            CD  = y  − m  = 19.2651 − 7.268 = 11.997   and  CD  = 0
               31   31   1                                    32
         Parent average for bull 3 (PA ) in country i is:
                                  3i
            PA  = 0.5(aˆ ) + 0.25(aˆ  + gˆ  ) = 0.5(4.310) + 0.25(2.176 + (−0.067)) = 2.68225
               31     71        21   G51
         and:
            PA  = 0.5(a ) + 0.25(a  + g ˆ  ) = 0.5(3.071) + 0.25(0.403 + (−0.010)) = 1.63375
                      ˆ
                               ˆ
               32     72        22   G52
               ˆ
                                                              ˆ
         where a  is the breeding value of animal j in country i and g  is the solution for
                ji                                             Gji
         group j and in the ith country.
                                                            1
            The residual variance for bull 3 in country 1 (r ) = ( )206.5 = 10.325 and its
                                                      31   20
                                                                                16
                                                                              =  .
         inverse equals 0.09685. Both sire and MGS of bull 3 are known, therefore a bull  11
         Then:
               ′ (
                                                .
                 −
                       −1
                 1
             ZR Z   +  G a bull ) =  ⎛0 09685 0.  ⎞ ⎟  +  ⎛ ⎜  0 4620  −0 62436.  ⎞ ⎟
                               ⎜
                               ⎝0         ⎠ 0  ⎝  −0 62436 0.  ..99693⎠
                               ⎛  . 0 55884 −  . 0 62436 ⎞
                              = ⎜ ⎝ −  . 0 62436  . 0 99693⎠ ⎟
          92                                                              Chapter 5
   103   104   105   106   107   108   109   110   111   112   113