Page 110 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 110

and:
            CD  = y  − m  = 7.7594 − 9.036 = −1.2766
               22   22   2
         Parent average for sire 2 (PA ) for country i is:
                                  2i
            PA  = 0.5(aˆ ) + 0.25(aˆ  + gˆ  ) = 0.5(7.015) + 0.25(−6.299 + (−0.067)) = 1.916
               21      81       91   G51
            PA  = 0.5(aˆ ) + 0.25(aˆ  + gˆ  ) = 0.5(4.489) + 0.25(−5.059 + (−0.010)) = 0.97725
               22     82        92  G52
         Progeny contributions (PC) from bull 3 to sire 2 (PC ) in country i are:
                                                      32i
            PC  = 4(aˆ ) − 2(aˆ ) = 4(8.059) − 2(4.310) = 23.616
               21    31      71
            PC  = 4(aˆ ) − 2(aˆ ) = 4(5.001) − 2(3.071)) = 13.862
               22    32      72
                                                       1
         The residual variance for bull 2 in country 1, (r ) = ( 150 )206.5 and country 2, (r ) =
                                                                              22
                                                  21
          1
         ( )148.5. Corresponding inverses were 0.72639 and 0.43771, respectively. Since both
         65
                                                                          = 2a  +
         sire and MGS of bull 2 are known and he has a maternal grandson, a bull  par
                             4
                     8
                 = 2( 11 ) + 0.25( ) = 1.54545. Therefore:
         0.25a prog          11
                               ⎛  . 0 72630 0  ⎞  ⎛  . 0 49087  −  . 0 66338 ⎞
            ( ′  −1  +  −1  ) =                 +
                         bull  ⎜              ⎟  ⎜                     ⎟
                               ⎝0        . 0 43771 ⎠  ⎝ −0.66338  . 1 05924 ⎠
                                                     .
             ZR Z G a
                               ⎛  . 1 21726  −  . 0 66338 ⎞
                             =  ⎜ ⎝ −  . 0 66338  . 1 49695 ⎠ ⎟
         From Eqn 5.19, the matrices of weights (W ) are:
                                              i
                             0 66338 ⎞
                 ⎛  1 21726 − .      − 1 ⎛  0 4620 − 0 62436⎞  ⎛  0 2007 −  0 1977⎞
                     .
                                          .
                                                                         .
                                                                .
                                                   .
            W =  ⎜ ⎝ − 0 66338  1 49695 ⎠ ⎟  ⎜ ⎝ − 0.662436 0 99693⎠ ⎟  =  ⎜ ⎝ − 0 3281  0 5783⎠ ⎟
              1
                                                                .
                              .
                                                                         .
                    .
                                                   .
                             0 66338⎞
                 ⎛  12 . 11726 − .   − 1  ⎛ .            ⎞  ⎛0 7867  0 2101 ⎞
                                        0 72639 0
                                                              .
                                                                      .
            W 2  =  ⎜ ⎝  − .  1 49695⎠ ⎟  ⎜ ⎝ 0   0 43771⎠ ⎟  = =  ⎜ ⎝0 3487  0 3855 ⎟ ⎠
                                                   .
                                                              .
                                                                      .
                   0 66338
                              .
                                                                        0 0124 ⎞
                 ⎛  1 21726  − 0 66338⎞  − 1 ⎛  0 02887 −  0 03902⎞  ⎛  0 0125 − .
                                                    .
                                                                 .
                                                                     5
                              .
                     .
                                          .
            W   =                                           =
                                                                0 02051 0 0361 ⎠
              3  ⎜ ⎝  −0 66338  1 1 49695 ⎠ ⎟  ⎜ ⎝ − 0 03902  0 06231⎠ ⎟  ⎜ ⎝  − .  .  ⎟
                     .
                                                    .
                              .
                                          .
         The vector of proof for bull 2 is:
            ⎛  ˆ a ⎞  ⎛  . 1 9160⎞  ⎛  . 2 7037⎞  ⎛ 23 616⎞  ⎛  2 176⎞
                                                              .
                                                     .
              21
                                               W
            ⎜ ⎝  ˆ a ⎠ ⎟  = W 1 ⎜ ⎝  . 0 9773⎠ ⎟  + W 2 ⎜ ⎝ −  . 1 2766⎠ ⎟  + W 3 ⎜ ⎝ 13 862⎠ ⎟  =  ⎜ ⎝ 0 403⎠ ⎟
                                                              .
                                                     .
              22
            Again, similar to bull 3 above, the contributions from the DRPs in both countries
         accounted for much of the MACE proofs of the bull 2 in countries 1 and 2.
            Recently, Interbull has modified the MACE systems to use sire and dam pedigree
         instead of sire and maternal sire pedigree. Partitioning of bull proofs can be done as in
         Section 5.2.3.
          94                                                              Chapter 5
   105   106   107   108   109   110   111   112   113   114   115