Page 180 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 180

−1
            Applying these rules, the calculation of the inverse of  G  for the pedigree in
                                                               v
         Example 10.1 is illustrated. For this pedigree, the matrix H and its inverse are:
            H = diag(1111        0.18  0.18  0.18  0.18  0.1508  0.18)  and
              −1
            H  = diag(1111        5.556  5.556  5.556  5.556  6.630  5.556)
         Note that in calculating the diagonal element for the paternal MQTL of animal 4 (d  ),
                                                                             4p,4p
         an inbreeding coefficient of 0.162 (covariance between the maternal and paternal
                                                                            −1
         MQTL alleles of the sire and dam, respectively) has been accounted for. Set G  with
                                                                            v
                              ii,jj
         elements represented as g  to zero and the contribution from the first three animals
         can be calculated as follows.
            For animals 1 and 2, parents are unknown; the diagonal elements are equal to 1
         for the MQTL alleles of these animals. Therefore, add 1 to g 1p,1p , g 1m,1m , g 2p,2p  and
         g 2m,2m , using the same coding as for the rows of G  as in Section 10.3. For paternal
                                                     v
                                p
                                                                       2 –1
         MQTL allele of animal 3, r  = 0.1 and d   equals 5.556. Add (1 − 0.1) h   = 4.50
                                o          3 p ,3 p                     3 p ,3 p
                                                                      2 –1
         to g 1p1p , (1 − 0.1)0.1(h –1  ) = 0.5 to g 1p,1m , −(1 − 0.1)h –1   = −5.00 to g 1p,3p , (0.1) h   = 0.056
                          3p,3p                    3p3p                 3p3p
         to g 1m,1m , (−0.1)h –1   = 0.556 to g 1m,3p  and h –1   to g 3p,3p . For the maternal allele of
                        3p3p                    3p3p
         animal 3, r  = 0.9 and h –1   = 5.556. Add (1 − 0.9) h   = 0.056 to g 2p,2p , (1 − 0.9)
                  p
                                                     2 –1
                  o           3m,3m                    3m,3m
                                                                   2 –1
         0.9(h –1  ) = 0.5 to g 2p,2m , −(1 − 0.9)h –1   = −0.556 to g 2p,3m , (0.9) h   = 4.50 to
             3m,3m                        3m3m                       3m3m
         g 2m,2m , (−0.9)h –1   = −0.500 to g 2m,3m  and h –1   to g  . Applying the rules to all
                     3m3m                      3m3m    3m,3m
                                    −1
         animals in the pedigree gives G  as:
                                    v
              1p     1m      2p    2m      3p    3m      4p    4m      5p     5m
         1p   5.556  1.000  0.000  0.000 −5.000  0.000 −0.556  0.000  0.000  0.000
         1m   1.000  5.556  0.000  0.000 −0.556  0.000 −5.000  0.000  0.000  0.000
         2p   0.000  0.000  1.056  0.500  0.000 −0.556  0.000  0.000  0.000  0.000
         2m   0.000  0.000  0.500  5.500  0.000 −5.000  0.000  0.000  0.000  0.000
         3p  −5.000 −0.556  0.000  0.000 14.556  1.000  0.000 −5.000  0.000 −5.000
         3m   0.000  0.000 −0.556 −5.000  1.000  5.667  0.000 −0.556  0.000 −0.556
         4p  −0.556 −5.000  0.000  0.000  0.000  0.000 10.925  0.597 −5.967  0.000
         4m   0.000  0.000  0.000  0.000 −5.000 −0.556  0.597  5.622 −0.663  0.000
         5p   0.000  0.000  0.000  0.000  0.000  0.000 −5.967 −0.663  6.630  0.000
         5m   0.000  0.000  0.000  0.000 −5.000 −0.556  0.000  0.000  0.000  5.556
            Similarly, the inverse of G  can be obtained using Eqn 10.11 (Van Arendonk
                                   −1
                                    v,i
         et al., 1994) as:

                   ⎡ G −1  ⎤ 0              −1 ss′   − s ⎤
                                              ⎡
            G −1 ,  = ⎢  vi ,  −1  ⎥ +( ii  − s′ i  G v i ,  − ) ⎢  ii  i ⎥  (10.16)
                               g
                                          s
              vi
                                         1 i
                   ⎣ ⎢0    ⎦ ⎥ 0              ⎣ −s′ i  1 1 ⎦
                                                        −1
         The application of Eqn 10.16 for the calculation of G   is briefly illustrated. It has
                                                         v
                                −1
         been shown earlier that  G   for the MQTL alleles of the first two animals is an
                                v
          164                                                            Chapter 10
   175   176   177   178   179   180   181   182   183   184   185