Page 191 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 191

Genotype at the two linked markers
                  Animal     Sire    Dam       Marker 1      Marker 2

                  1           –        –          11            22
                  2           –        –          33            44
                  3           1        3          12            44
                  4           4        3          21            14
        Assuming no double crossing over, the genetic parameters as in Example 10.2 and
        letting p and q be equal to 0.8 and 0.2, respectively, predict the effects of the sex of
        the calf, additive genetic effects (breeding values) not linked to the MQTL for animals
        and additive genetic effects for the MQTL alleles of animals.
            The alleles at the MQTL can be defined from the genotypes at the two linked
        marker loci. Thus the paternal and maternal MQTL alleles for animal 1 will be v
                                                                               s11
        and v , respectively. Correspondingly, those for animal 4 will be  v   and  v  ,
              s22                                                     o21      o14
        respectively. As in Example 10.3, a  = 0.6./0.3 = 2 and a  = 0.6/0.05 = 12. With the
                                       1                  2
        assumption of no double crossing over, for calf 3, v   = v   (calf 2); therefore, the
                                                      o44  m44
        row and column for v   are deleted from G  and the MME.
                           o44                 v
            The design matrix Z is an identity matrix of order four and W is:
                                                  ⎡ 11 0 000 0⎤
                                                                    0
                                                  ⎢ 11 0 0000        ⎥
                ⎡ 11 00000⎤                       ⎢                  ⎥ ⎥
                ⎢ 00 11 000        ⎥              ⎢ ⎢ 0 011 0 0 0⎥   ⎥
            W =  ⎢                 ⎥  and  W W =′  ⎢ 00 1 2 1 0 0    ⎥
                ⎢ 000 11 00⎥
                ⎢                  ⎥              ⎢ 000 11 00        ⎥
                ⎣ 00000 11         ⎦              ⎢                  ⎥
                                                  ⎢ 000 00 11 ⎥
                                                  ⎢                  ⎥
                                                  ⎣ 000 00 11        ⎦
        The covariance matrix G  is:
                              v
                  é 1.000 0.000 0.000 0.000 0.200 0.800 0.040ù
                  ê                                             ú
                  ê 0.000 1.000 0.000 0.0000 0.800 0.200 0.160  ú
                  ê 0.000 0.000 1.000 0.000 0.000 0.000 0.000ú
                  ê                                             ú
            G  =  0.000 00.000 0.000 1.000 0.000 0.000 0.800
              v   ê                                             ú
                  ê 0.200 0.800 0.000 0.000 1.000 0.3320 0.200  ú
                  ê                                             ú
                  ê 0.800 0.200 0.000 0.000 0.320 1.000 0.064 ú
                  ê                                             ú
                                    0
                  ë 0.040 0.160 0.000 0.800 0.200 0.064 1.000   û
            The calculation of G  with elements g(i,j) for the first few animals is as follows.
                              v
        For the first two animals, both parents are unknown; therefore, the diagonal element
        of G for either the paternal or maternal allele is 1 for these animals. Calf 3 inherited
                                                  p
        marker haplotype v  from its sire; therefore, r  = p in Eqn 10.7. Thus:
                         s12                      o
            g(      ) = (1 − p)g(   ) + pg(      ) = q(1) + p(0) = q = 0.2
              3p3p,1p1p       1p1p,1p1p   1m1m,1p1p
            g(       ) = (1 − p)g(    ) + pg(      ) = q(0) + p(1) = p = 0.8
              3p3p,1m1m        1p1p,1m1m    1m1m,1m1m
            g(      ) = (1 − p)g(   ) + pg(      ) = q(0) + p(0) = 0
              3p3p,2p2p       1p1p,2p2p   1m1m,2p2p
            g(       ) = (1 − p)g(    ) + pg(      ) = q(0) + p(0) = 0
              3p3p,2m2m        1p1p,2m2m    1m1m,2m2m
        Use of Genetic Markers in Breeding Value Prediction                  175
   186   187   188   189   190   191   192   193   194   195   196