Page 192 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 192

p
         The marker haplotype inherited by calf 4 from its sire is v  ; therefore, r  = q in
                                                             s21           o
         Eqn 10.7. Thus:
            g(      ) = (1 − q)g(    ) + qg(     ) = p(1) + q(0) = p = 0.8
              4p4p,1p1p       1p1p,1p1p   1m1m,1p1p
            g(       ) = (1 − q)g(    ) + qg(      ) = p(0) + q(1) = q = 0.2
              4p4p,1m1m        1p1p,1m1m    1m1m,1m1m
            g(      ) = (1 − q)g(    ) + qg(     ) = p(0) + q(0) = 0
              4p4p,2p2p       1p1p,2p2p   1m1m,2p2p
            g(       ) = (1 − q)g(    ) + qg(      ) = p(0) + q(0) = 0
              4p4p,2m2m        1p1p,2m2m    1m1m,2m2m
            g(       ) = (1 − q)g(    ) + qg(      ) = p(q) + q(p) = 2pq = 0.32
              4p4p,3m3m        1p1p,3m3m    1m1m,3m3m
            The inverse of G  is:
                           v
                 é  3.125  1.000 0.000    0.000  -0.625  -2.500   0.000ù
                 ê                        0.000 - 2.500 -              ú
                                      0
                 ê  1.000  3.125 0.000                    0.625   0.000 ú
                 ê  0.000  0.000 1.000    0.000   0.000   0.000   0.000ú
                                                                      0
                 ê
              -1
            G  =  0.000    0.000 0.000    3.000   0.500   0.000 - 2.500 ú
              v  ê                                                     ú
                 ê - 0.625 - 2.500 0.000  0.5000  3.250   0.000 - 0.625 ú
                 ê                                                     ú
                  - ê  2.500 - 0.625 0.000  0.000  0.000  3.125   0.000 ú
                 ê                                                     ú
                 ë  0.0000  0.000 0.000 - 2.500 - 0.625   0.000   3.125 û
         The matrix G  was computed using the rules outlined earlier. Thus for the first two
                    −1
         animals (first four alleles), add 1 to the diagonal elements since parents of both calves
         are unknown. For paternal allele of calf 3, add 1/2pq to the diagonal element
         (3p3p,3p3p) of G , q/2p to element (1p1p,1p1p), p/2q to element (1m1m,1m1m),
                        −1
         −1/2p to elements (1p1p,3p3p) and (3p3p,1p1p), −1/2q to elements (1m1m,3p3p)
         and (3p3p,1m1m) and 0.5 to the elements (1p1p,1m1m) and (1m1m,1p1p).
                       −1
            The matrix A  for the example data can be calculated using the usual rules; therefore,
         the MME can easily be set up from the design matrices and inverse of the covariance
         matrices given. Solving the MME by direct inversion gave the following results:
                     Effects                                 Solutions
                     Sex of calf
                        Male                                   7.475
                        Female                                 5.091
                     Breeding values for animals
                        1                                      0.034
                        2                                     –0.034
                        3                                      0.246
                        4                                      0.280
                     Additive effects for animals at the MQTL
                        1p                                    –0.008
                        1m                                     0.005
                        2p                                    –0.047
                        2m                                     0.049
                        3p                                     0.024
                        4p                                     0.010
                        4m                                     0.059

            A similar model to that in Example 10.5 has been used by Boichard et al. (2002)
         for incorporating MQTL information into genetic evaluation for milk production
         traits in young bulls.

          176                                                            Chapter 10
   187   188   189   190   191   192   193   194   195   196   197