Page 223 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 223
202 PART 3 Therapeutic Modalities for the Cancer Patient
132. Sorenmo KU, Jeglum KA, Helfand SC: Chemotherapy of canine 155. Wheeler GP, Johnston TP, Bowdon BJ, et al.: Comparison of the
hemangiosarcoma with doxorubicin and cyclophosphamide, J Vet properties of metabolites of ccnu, Biochem Pharmacol 26:2331–
Intern Med 7:370–376, 1993. 2336, 1977.
VetBooks.ir 133. Sorenmo K: Canine mammary gland tumors, Vet Clin North Am 156. Lee FY, Workman P, Roberts JT, et al.: Clinical pharmacokinet-
ics of oral ccnu (lomustine), Cancer Chemother Pharmacol 14:125–
Small Anim Pract 33:573–596, 2003.
134. Jeglum KA, deGuzman E, Young KM: Chemotherapy of advanced
131, 1985.
mammary adenocarcinoma in 14 cats, J Am Vet Med Assoc 187:157– 157. Heading KL, Brockley LK, Bennett PF: Ccnu (lomustine) toxicity
160, 1985. in dogs: a retrospective study (2002-07), Aust Vet J 89:109–116,
135. Mauldin GN, Matus RE, Patnaik AK, et al.: Efficacy and toxic- 2011.
ity of doxorubicin and cyclophosphamide used in the treatment 158. Rassnick KM, Gieger TL, Williams LE, et al.: Phase I evaluation
of selected malignant tumors in 23 cats, J Vet Intern Med 2:60–65, of CCNU (lomustine) in tumor-bearing cats, J Vet Intern Med
1988. 15:196–199, 2001.
136. Barber LG, Sorenmo KU, Cronin KL, et al.: Combined doxorubi- 159. Hosoya K, Lord LK, Lara-Garcia A, et al.: Prevalence of elevated
cin and cyclophosphamide chemotherapy for nonresectable feline alanine transaminase activity in dogs treated with CCNU (lomus-
fibrosarcoma, J Am Anim Hosp Assoc 36:416–421, 2000. tine), Vet Comp Oncol 7:244–255, 2009.
137. Creaven PJ, Allen LM, Alford DA, et al.: Clinical pharmacology of 160. Kristal O, Rassnick KM, Gliatto JM, et al.: Hepatotoxicity associ-
isophosphamide, Clin Pharmacol Ther 16:77–86, 1974. ated with CCNU (lomustine) chemotherapy in dogs, J Vet Intern
138. Norpoth K: Studies on the metabolism of isopnosphamide (NSC- Med 18:75–80, 2004.
109724) in man, Cancer Treat Rep 60:437–443, 1976. 161. Musser ML, Quinn HT, Chretin JD: Low apparent risk of CCNU
139. Lind MJ, Roberts HL, Thatcher N, et al.: The effect of route of (lomustine)-associated clinical hepatotoxicity in cats, J Feline Med
administration and fractionation of dose on the metabolism of ifos- Surg 14:871–875, 2012.
famide, Cancer Chemother Pharmacol 26:105–111, 1990. 162. Skorupski KA, Hammond GM, Irish AM, et al.: Prospective ran-
140. Rassnick KM, Frimberger AE, Wood CA, et al.: Evaluation of ifos- domized clinical trial assessing the efficacy of denamarin for pre-
famide for treatment of various canine neoplasms, J Vet Intern Med vention of CCNU-induced hepatopathy in tumor-bearing dogs,
14:271–276, 2000. J Vet Intern Med 25:838–845, 2011.
141. Rassnick KM, Moore AS, Northrup NC, et al.: Phase I trial and 163. Skorupski KA, Durham AC, Duda L, et al.: Pulmonary fibrosis
pharmacokinetic analysis of ifosfamide in cats with sarcomas, Am J after high cumulative dose nitrosurea chemotherapy in a cat, Vet
Vet Res 67:510–516, 2006. Comp Oncol 6:120–125, 2008.
142. Rassnick KM, Rodriguez CO, Khanna C, et al.: Results of a phase 164. Reusser F: Mode of action of streptozotocin, J Bacteriol 105:580–
II clinical trial on the use of ifosfamide for treatment of cats with 588, 1971.
vaccine-associated sarcomas, Am J Vet Res 67:517–523, 2006. 165. Bhuyan BK: The action of streptozotocin on mammalian cells,
143. Begleiter A, Goldenberg GJ: Uptake and decomposition of chlo- Cancer Res 30:2017–2023, 1970.
rambucil by l5178y lymphoblasts in vitro, Biochem Pharmacol 166. Schnedl WJ, Ferber S, Johnson JH, et al.: Stz transport and cyto-
32:535–539, 1983. toxicity: specific enhancement in glut2-expressing cells, Diabetes
144. Jiang BZ, Bank BB, Hsiang YH, et al.: Lack of drug-induced DNA 43:1326–1333, 1994.
cross-links in chlorambucil-resistant chinese hamster ovary cells, 167. Hosokawa M, Dolci W, Thorens B: Differential sensitivity of
Cancer Res 49:5514–5517, 1989. glut1- and glut2-expressing beta cells to streptozotocin, Biochem
145. Mitoma C, Onodera T, Takegoshi T, et al.: Metabolic disposition Biophys Res Commun 289:1114–1117, 2001.
of chlorambucil in rats, Xenobiotica 7:205–220, 1977. 168. Adolphe AB, Glasofer ED, Troetel WM, et al.: Preliminary phar-
146. Goodman GE, McLean A, Alberts DS, et al.: Inhibition of human macokinetics of streptozotocin, an antineoplastic antibiotic, J Clin
tumour clonogenicity by chlorambucil and its metabolites, Br J Pharmacol 17:379–388, 1977.
Cancer 45:621–623, 1982. 169. Schein PS, Cooney DA, Vernon ML: The use of nicotinamide to
147. Schrempp DR, Childress MO, Stewart JC, et al.: Metronomic modify the toxicity of streptozotocin diabetes without loss of anti-
administration of chlorambucil for treatment of dogs with urinary tumor activity, Cancer Res 27:2324–2332, 1967.
bladder transitional cell carcinoma, J Am Vet Med Assoc 242:1534– 170. Schein PS, Rakieten N, Cooney DA, et al.: Streptozotocin diabetes
1538, 2013. in monkeys and dogs, and its prevention by nicotinamide, Proc Soc
148. Custead MR, Weng HY, Childress MO: Retrospective compari- Exp Biol Med 143:514–518, 1973.
son of three doses of metronomic chlorambucil for tolerability and 171. Schein PS: 1-Methyl-1-nitrosourea and dialkylnitrosamine depres-
efficacy in dogs with spontaneous cancer, Vet Comp Oncol 15:808– sion of nicotinamide adenine dinucleotide, Cancer Res 29:1226–
819, 2017. 1232, 1969.
149. Stein TJ, Pellin M, Steinberg H, et al.: Treatment of feline gastro- 172. Panasci LC, Fox PA, Schein PS: Structure-activity studies of meth-
intestinal small-cell lymphoma with chlorambucil and glucocorti- ylnitrosourea antitumor agents with reduced murine bone marrow
coids, J Am Anim Hosp Assoc 46:413–417, 2010. toxicity, Cancer Res 37:3321–3328, 1977.
150. Begleiter A, Lam HP, Goldenberg GJ: Mechanism of uptake of 173. Moore AS, Nelson RW, Henry CJ, et al.: Streptozocin for treat-
nitrosoureas by l5178y lymphoblasts in vitro, Cancer Res 37:1022– ment of pancreatic islet cell tumors in dogs: 17 cases (1989–1999),
1027, 1977. J Am Vet Med Assoc 221:811–818, 2002.
151. Montgomery JA, James R, McCaleb GS, et al.: The modes of 174. Audette RC, Connors TA, Mandel HG, et al.: Studies on the
decomposition of 1,3-bis(2-chloroethyl)-1-nitrosourea and related mechanism of action of the tumour inhibitory triazenes, Biochem
compounds, J Med Chem 10:668–674, 1967. Pharmacol 22:1855–1864, 1973.
152. Colvin M, Brundrett RB, Cowens W, et al.: A chemical basis for 175. Reid JM, Kuffel MJ, Miller JK, et al.: Metabolic activation of dacar-
the antitumor activity of chloroethylnitrosoureas, Biochem Pharma- bazine by human cytochromes p450: the role of cyp1a1, cyp1a2,
col 25:695–699, 1976. and cyp2e1, Clin Cancer Res 5:2192–2197, 1999.
153. Kohn KW: Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)- 176. Nagasawa HT, Shirota FN, Mizuno NS: The mechanism of alkyla-
1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas, Cancer Res tion of DNA by 5-(3-methyl-1-triazeno)imidazole-4-carboxamide
37:1450–1454, 1977. (mic), a metabolite of dic (NSC-45388): non-involvement of
154. Hill DL, Kirk MC, Struck RF: Microsomal metabolism of nitro- diazomethane, Chem Biol Interact 8:403–413, 1974.
soureas, Cancer Res 35:296–301, 1975.