Page 79 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 79
58 PART I The Biology and Pathogenesis of Cancer
83. Blasco MA, Lee H-W, Hande MP, et al.: Telomere shortening and 111. Lapidot T, Sirard C, Vormoor J, et al.: A cell initiating human
tumour formation by mouse cells lacking telomerase RNA, Cell acute myeloid leukaemia after transplantation into SCID mice,
91:25–34, 1997. Nature 367:645–648, 1994.
VetBooks.ir 84. Biller BJ, Kitchel B, Casey D, et al.: Evaluation of an assay for 112. Sirard C, Lapidot T, Vormoor J, et al.: Normal and leukemic
detecting telomerase activity in neoplastic tissues of dogs, Am J Vet
SCID-repopulating cells (SRC) coexist in the bone marrow and
Res 59:1526–1528, 1998.
85. McKenzie K, Umbricht CB, Sukumar S: Applications of telomer- peripheral blood from CML patients in chronic phase, whereas leu-
kemic SRC are detected in blast crisis, Blood 87:1539–1548, 1996.
ase research in the fight against cancer, Mol Med Today 5:114–122. 113. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as
86. Nasir L, Devlin P, Mckevitt T, et al.: Telomere lengths and telomer- a hierarchy that originates from a primitive hematopoietic cell, Nat
ase activity in dog tissues: a potential model system to study human Med 3:730–737, 1997.
telomere and telomerase biology, Neoplasia 3:351–359, 2001. 114. Fidler IJ, Kripke ML: Metastasis results from preexisting variant
87. Shay JW, Wright WE: Telomerase activity in human cancer, Curr cells within a malignant tumor, Science 197:893–895, 1977.
Opin Oncol 8:66–71, 1996. 115. Heppner GH: Tumor heterogeneity, Cancer Res 44:2259–2265,
88. Yazawa M, Okuda M, Setoguchi A, et al.: Measurement of telom- 1984.
erase activity in dog tumours, J Vet Med Sci 61:1125–1129, 1999. 116. Nowell PC: Mechanisms of tumor progression, Cancer Res
89. Zhu J, Wang H, Bishop JM, et al.: Telomerase extends the life-span 46:2203–2207, 1986.
of virus-transformed human cells without net telomere lengthen- 117. Southam CM, Brunschwig A: Quantitative studies of autotrans-
ing, Proc Natl Acad Sci U S A 96:3723–3728, 1999. plantation of human cancer, Cancer 14:971–978, 1961.
90. Akincilar SC, Unal B, Tergaonkar V: Reactivation of telomerase in 118. Pang LY, Argyle DJ: Using naturally occurring tumours in dogs
cancer, Cell Mol Life Sci 73:1659–1670, 2016. and cats to study telomerase and cancer stem cell biology, Biochim
91. Folkman J: Tumor angiogenesis and tissue factor, Nat Med 2:167– Biophys Acta 1792380–391, 2009.
168, 1996. 119. Pang LY, Argyle D: Cancer stem cells and telomerase as potential
92. Folkman J: Angiogenesis: an organizing principle for drug discov- biomarkers in veterinary oncology, Vet J 185:15–22, 2010.
ery? Nat Rev Drug Discov 6:273–286, 2007. 120. Pang LY, Cervantes-Arias A, Else RW, et al.: Canine mammary can-
93. Kerbel RS: Tumor angiogenesis: past, present and the near future, cer stem cells are radio- and chemo-resistant and exhibit an epithe-
Carcinogenesis 21:505–515, 2000. lial-mesenchymal transition phenotype, Cancer 3:1744–1762, 2011.
94. Nagy JA, Chang SH, Shih DC, et al.: Heterogeneity of the tumor 121. Hida K, Maishi N, Annan DA, et al.: Contribution of tumor endo-
vasculature, Semin Thromb Hemost 36:321–331, 2010. thelial cells in cancer progression, Int J Mol Sci 19:E1272, 2018.
95. Olive KP, Jacobetz MA, Davidson CJ, et al.: Inhibition of Hedge- 122. Meng MB, Zaorsky NG, Deng L, et al.: Pericytes: a double-edged
hog signaling enhances delivery of chemotherapy in a mouse model sword in cancer therapy, Future Oncol 11:169–179, 2015.
of pancreatic cancer, Science 324:1457–1461, 2009. 123. Tao L, Huang G, Song H, et al.: Cancer associated fibroblasts: an
96. Huang T, Sun L, Yuan X, et al.: Thrombospondin-1 is a multifaceted essential role in the tumor microenvironment, Oncol Lett 14:2611–
player in tumor progression, Oncotarget 8:84546–84558, 2017. 2620, 2017.
97. Pircher A, Hilbe W, Heidegger I, et al.: Biomarkers in tumor angio- 124. Mendoza M, Khanna C: Revisiting the seed and soil in cancer
genesis and anti-angiogenic therapy, Int J Mol Sci 12:7077–7099, metastasis, Int J Biochem Cell Biol 41:1452–1462, 2009.
2011. 125. Sell S: Stem cell origin of cancer and differentiation therapy, Crit
98. Boss KM, Muradyan N, Thrall DE: DCE-MRI: a review and appli- Rev Oncol Hematol 51:1–28, 2004.
cations in veterinary oncology, Vet Comp Oncol 11:87–100, 2013. 126. Ramaswamy S, Ross KN, Lander ES, et al.: A molecular signature
99. Shanmugam M, McBrayer SK, Rosen ST: Targeting the Warburg of metastasis in primary solid tumors, Nat Genet 33:49–54, 2003.
effect in hematological malignancies: from PET to therapy, Curr 127. Patel SA, Vanharanta S: Epigenetic determinants of metastasis, Mol
Opin Oncol 21:531–536, 2009. Oncol 11:79–96, 2017.
100. Sukari A, Nagasaka M, Al-Hadidi A, et al.: Cancer immunology 128. Clark EA, Golub TR, Lander ES, et al.: Genomic analysis of metas-
and immunotherapy, Anticancer Res 36:5593–5606, 2016. tasis reveals an essential role for RhoC, Nature 406:532–535, 2000.
101. Vinay DS, Ryan EP, Pawelec G, et al.: Immune evasion in can- 129. Shevde LA, Welch DR: Metastasis suppressor pathways–an evolv-
cer: mechanistic basis and therapeutic strategies, Semin Cancer Biol ing paradigm, Cancer Lett 198:1–20, 2003.
35(Suppl):S185–S198, 2015. 130. Steeg PS: Perspectives on classic article: metastasis suppressor genes,
102. Sica A, Allavena P, Mantovani A: Cancer related inflammation: the J Natl Cancer Inst 96:E4, 2004.
macrophage connection, Cancer Lett 267:204–215, 2008. 131. Paoloni M, Davis S, Lana S, et al.: Canine tumor cross-species
103. Ben-Neriah Y, Karin M: Inflammation meets cancer, with NF- genomics uncovers targets linked to osteosarcoma progression,
kappa B as the matchmaker, Nat Immunol 12:715–723, 2011. BMC Genom 10:625, 2009.
104. Argyle DJ, Blacking T: From viruses to cancer stem cells: dissecting 132. Mayr B, Brem G, Reifinger M: Absence of S100A4 (mts1) gene
the pathways to malignancy, Vet J 177:311–323, 2008. mutations in various canine and feline tumours. Detection of a
105. Blacking TM, Wilson H, Argyle DJ: Is cancer a stem cell disease? polymorphism in feline S100A4 (mts1), J Vet Med A Physiol Pathol
Theory, evidence and implications, Vet Comp Oncol 5:76–89, 2007. Clin Med 47:123–128, 2000.
106. Capodanno Y, Buishand FO, Pang LY, et al.: Notch pathway inhi- 133. Khanna C, Wan X, Bose S, et al.: The membrane-cytoskeleton
bition targets chemoresistant insulinoma cancer stem cells, Endocr linker ezrin is necessary for osteosarcoma metastasis, Nat Med
Relat Cancer 25:131–144, 2018. 10:182–186, 2004.
107. Pang LY, Saunders L, Argyle DJ: Epidermal growth factor recep- 134. Ren L, Hong SH, Chen QR, et al.: Dysregulation of ezrin phos-
tor activity is elevated in glioma cancer stem cells and is required phorylation prevents metastasis and alters cellular metabolism in
to maintain chemotherapy and radiation resistance, Oncotarget osteosarcoma, Cancer Res 72:1001–1012, 2012.
8:72494–72512, 2017. 135. Hong SH, Osborne T, Ren L, et al.: Protein kinase C regulates
108. Park CH, Bergsage DE, McCulloc EA: Mouse myeloma tumour ezrin-radixin-moesin phosphorylation in canine osteosarcoma cells,
stem cells: primary cell culture assay, J Natl Cancer Inst 46:411, 1971. Vet Comp Oncol 9:207–218, 2011.
109. Huntly BJ, Gilliland DG: Leukaemia stem cells and the evolution 136. Shoushtari AN, Szmulewitz RZ, Rinker-Schaeffer CW: Metastasis-
of cancer-stem-cell research, Nat Rev Cancer 5:311–321, 2005. suppressor genes in clinical practice: lost in translation? Nat Rev
110. Kamel-Reid S, Letarte M, Sirard C, et al.: A model of human acute Clin Oncol 8:333–342, 2011.
lymphoblastic leukemia in immune-deficient SCID mice, Science 137. Liotta LA, Kohn EC: The microenvironment of the tumour-host
246:1597–1600, 1989. interface, Nature 411:375–379, 2001.