Page 80 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 80
CHAPTER 2 Tumor Biology and Metastasis 59
138. Friedl P, Wolf K, Lammerding J: Nuclear mechanics during cell 162. Kalluri R: Basement membranes: structure, assembly and role in
migration, Curr Opin Cell Biol 23:55–64, 2011. tumour angiogenesis, Nat Rev Cancer 3:422–433, 2003.
139. Friedl P, Wolf K: Plasticity of cell migration: a multiscale tuning 163. Frisch SM, Francis H: Disruption of epithelial cell-matrix interac-
VetBooks.ir 140. Sabeh F, Shimizu-Hirota R, Weiss SJ: Protease-dependent versus 164. Taddei ML, Giannoni E, Fiaschi T, et al.: Anoikis: an emerging
tions induces apoptosis, J Cell Biol 124:619–626, 1994.
model, J Cell Biol 188 11–19, 2010
hallmark in health and diseases, J Pathol 226:380–393, 2012.
-independent cancer cell invasion programs: three-dimensional
amoeboid movement revisited, J Cell Biol 185:11–19, 2009. 165. Grossmann J: Molecular mechanisms of “detachment-induced
141. Scott RW, Crighton D, Olson MF: Modeling and imaging apoptosis–Anoikis”, Apoptosis 7:247–260, 2002.
3-dimensional collective cell invasion, J Vis Exp 58:3525, 2011. 166. Guo W, Giancotti FG: Integrin signalling during tumour progres-
142. Condeelis J, Segall JE: Intravital imaging of cell movement in sion, Nat Rev Mol Cell Biol 5:816–826, 2004.
tumours, Nat Rev Cancer 3:921–930, 2003. 167. Fosmire SP, Dickerson EB, Scott AM, et al.: Canine malignant
143. Condeelis J, Singer RH, Segall JE: The great escape: when cancer hemangiosarcoma as a model of primitive angiogenic endothelium,
cells hijack the genes for chemotaxis and motility, Annu Rev Cell Lab Invest 84:562–572, 2004.
Dev Biol 21:695–718, 2005. 168. Akhtari M, Mansuri J, Newman KA, et al.: Biology of breast cancer
144. Wang W, Wyckoff JB, Frohlich VC, et al.: Single cell behavior in bone metastasis, Cancer Biol Ther 7:3–9, 2008.
metastatic primary mammary tumors correlated with gene expres- 169. Restucci B, De Vico G, Maiolino P: Expression of beta 1 integ-
sion patterns revealed by molecular profiling, Cancer Res 62:6278– rin in normal, dysplastic and neoplastic canine mammary gland,
6288, 2002. J Comp Pathol 113:165–173, 1995.
145. Wyckoff JB, Segall JE, Condeelis JS: The collection of the motile 170. Olivry T, Moore PF, Naydan DK, et al.: Investigation of epider-
population of cells from a living tumor, Cancer Res 60:5401–5404, motropism in canine mycosis fungoides: expression of intercellular
2000. adhesion molecule-1 (ICAM-1) and beta-2 integrins, Arch Derma-
146. Jankowski MK, Ogilvie GK, Lana SE, et al.: Matrix metallopro- tol Res 287:186–192, 1995.
teinase activity in tumor, stromal tissue, and serum from cats with 171. Moore PF, Rossitto PV, Danilenko DM: Canine leukocyte inte-
malignancies, J Vet Intern Med 16:105–108, 2002. grins: characterization of a CD18 homologue, Tissue Antigens
147. Loukopoulos P, O’Brien T, Ghoddusi M, et al.: Characterisation 36:211–220, 1990.
of three novel canine osteosarcoma cell lines producing high levels 172. Selvarajah GT, Kirpensteijn J, van Wolferen ME, et al.: Gene
of matrix metalloproteinases, Res Vet Sci 77:131–141, 2004. expression profiling of canine osteosarcoma reveals genes associated
148. Hirayama K, Yakota H, Onai R, et al.: Detection of matrix metallo- with short and long survival times, Mol Cancer 8:72, 2009.
proteinases in canine mammary tumours: analysis by immunohis- 173. Fukata M, Kaibuchi K: Rho-family GTPases in cadherin-mediated
tochemistry and zymography, J Comp Pathol 127:249–256, 2002. cell-cell adhesion, Nat Rev Mol Cell Biol 2:887–897, 2001.
149. Lana SE, Ogilvie GK, Hansen RA, et al.: Identification of matrix 174. Seftor RE, Seftor EA, Gehlsen KR, et al.: Role of the alpha v beta 3
metalloproteinases in canine neoplastic tissue, Am J Vet Res 61:111– integrin in human melanoma cell invasion, Proc Natl Acad Sci U S A
114, 2000. 89:1557–1561, 1992.
150. Leibman NF, Lana SE, Hansen RA, et al.: Identification of matrix 175. Zheng DQ, woodard AS, Fornaro M, et al.: Prostatic carcinoma
metalloproteinases in canine cutaneous mast cell tumors, J Vet cell migration via alpha(v)beta3 integrin is modulated by a focal
Intern Med 14:583–586, 2000. adhesion kinase pathway, Cancer Res 59:1655–1664, 1999.
151. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloprotein- 176. Ruoslahti E, Reed JC: Anchorage dependence, integrins, and apop-
ase inhibitors and cancer: trials and tribulations, Science 295:2387– tosis, Cell 77:477–478, 1994.
2392, 2002. 177. Paoli P, Giannoni E, Chiarugi P: Anoikis molecular pathways and
152. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloprotein- its role in cancer progression, Biochim Biophys Acta 1833:3481–
ase inhibitors and cancer: trials and tribulations, Science 295:2387– 3498, 2013.
2392, 2002. 178. Nagaprashantha LD, Vatsyayan R, Lalsani PC, et al.: The sensors
153. Moore AS, Dernell WS, Ogilvie GK, et al.: Doxorubicin and BAY and regulators of cell-matrix surveillance in anoikis resistance of
12–9566 for the treatment of osteosarcoma in dogs: a randomized, tumors, Int J Cancer 128:743–752, 2011.
double-blind, placebo-controlled study, J Vet Intern Med 21:783– 179. Lascelles BD, Dernell WS, Correa MT, et al.: Improved survival
790, 2007. associated with postoperative wound infection in dogs treated with
154. Ramnath N, Creaven PJ: Matrix metalloproteinase inhibitors, Curr limb-salvage surgery for osteosarcoma, Ann Surg Oncol 12:1073–
Oncol Rep 6:96–102, 2004. 1083, 2005.
155. Rucci N, Sanita P, Angelucci A: Roles of metalloproteases in meta- 180. Yu C, Xu S-F, Xu M, et al.: Postoperative infection and survival
static niche, Curr Mol Med 11:609–622, 2011. in osteosarcoma patients: reconsideration of immunotherapy for
156. Qian BZ, Pollard JW: Macrophage diversity enhances tumor pro- osteosarcoma, Mol Clin Oncol 3:495–500, 2015.
gression and metastasis, Cell 141:39–51, 2010. 181. Smyth MJ, Hayakawa Y, Takeda K, et al.: New aspects of natu-
157. Foroni C, Broggini M, Generali D, et al.: Epithelial-mesenchymal ral-killer-cell surveillance and therapy of cancer, Nat Rev Cancer
transition and breast cancer: role, molecular mechanisms and clini- 2:850–861, 2002.
cal impact, Cancer Treat Rev 38:389–397, 2012. 182. Mocellin S, Rossi CR, Lisa M, et al.: Colorectal cancer vaccines:
158. Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in principles, results, and perspectives, Gastroenterology 127:1821–
tumour progression: an alliance against the epithelial phenotype? 1837, 2004.
Nat Rev Cancer 7:415–428, 2007. 183. Mocellin S, Rossi CR, Nitti D: Cancer vaccine development: on
159. Moreno-Bueno G, Peinado H, Molina P, et al.: The morphological the way to break immune tolerance to malignant cells, Exp Cell Res
and molecular features of the epithelial-to-mesenchymal transition, 299:267–278, 2004.
Nat Protoc 4:1591–1613, 2009. 184. Rao B, Han M, Wang L, et al.: Clinical outcomes of active specific
160. Floor S, van Staveren WC, Larsimont D, et al.: Cancer cells in immunotherapy in advanced colorectal cancer and suspected mini-
epithelial-to-mesenchymal transition and tumor-propagating-can- mal residual colorectal cancer: a meta-analysis and system review,
cer stem cells: distinct, overlapping or same populations, Oncogene J Transl Med 9:17, 2011.
30:4609–4621, 2011. 185. Bergman PJ: Cancer immunotherapy, Vet Clin N Am Small Anim
161. Hendrix MJ, Seftor EA, Hess AR, et al.: Vasculogenic mimicry Pract 40:507–518, 2010.
and tumour-cell plasticity: lessons from melanoma, Nat Rev Cancer 186. Grosenbaugh DA, Leard AT, Bergman P, et al.: Safety and efficacy
3:411–421, 2003. of a xenogeneic DNA vaccine encoding for human tyrosinase as