Page 120 - Grade 10 C.Math
P. 120

9.4.  ;fwf/0f d"ns ;dLs/0f (Equations involving surds)

                   √16 eGgfn] s] a'lemG5 < s]  √x  = x n]Vg ;lsG5 < 5nkmn ug'{xf];\ .

                   rn/flz  dn;lxt  ePsf]  ;dLs/0fnfO{  ;fwf/0f  d"ns  ;dLs/0f  elgG5  .  pbfx/0fsf
                             "
                                                           \
                   nflu  √x = 2, √x − 1 = 5  cflb  .  d"n  lrxgsf]  ju{  ubf{  d"n  lrxg  x6\5,  h:t  M
                                                                                             }
                                                                                \

               Curriculum Development Centre

                   √x = 3 eP  √x  = (3)  cyjf   = 9 x'G5 .
                   ;fwf/0f d"ns ;dLs/0f xn ubf{ k|fKt ePsf] pTt/ l7s 5 5}g egL yfxf kfpg pTt/
                   k|lt:yfkg u/L x]g{ ;lsG5 . ;fwf/0fd"ns ;dLs/0f xn ubf{ k|fKt x'g] ;ªVofx¿dWo]
                                                                                     \
                   h'g ;ªVofn] ;dLs/0fnfO{ ;Gti6 ub}{g To;nfO "Extraneous root" eGb5g .
                                              '
                                                             {
                          \
                                                                                    \
               pbfx/0f

                          '{
               1.   xn ugxf];\  -s_ √x + 5 − √x = 1       -v_ √  + 1 = 3
               ;dfwfg

                                                                -v_ oxfF, √  + 1 = 3
               -s_ oxfF, √x + 5 − √x = 1

                                                                  cyjf, √  = 3 − 1
               cyjf, √x + 5 = 1 + √x

                                                                  cyjf, √  = 2

               cyjf,  √x + 5  =  1 + √x   -b'j}lt/ ju{ ubf{_

               cyjf, x + 5 = 1 + 2√x + x                          cyjf,       = 2
               cyjf, 4 = 2√x                                    b'j}lt/ rf}yf] 3ft lnFbf


               cyjf, 2 = √x                                              ×
                                                                cyjf,       = 16
                                  2
                         2
               cyjf, (2) =  √x
                                                                cyjf,   = 16
               cyjf, 4 = x
                                                                hfFr ubf{ M
               hfFr ubf{, √x + 5 − √x = 1

                                                                √  + 1 = 3
               cyjf, √4 + 5 − √4 = 1

                                                                cyjf, √16 + 1 = 3
               cyjf, 3 − 2 = 1
                                                                cyjf, 2 + 1 = 3
               cyjf, 1 = 1
                                                                cyjf, 3 = 3
               ∴ x = 4
                                                                 x = 16

               ul0ft, sIff – 10                                                         117
   115   116   117   118   119   120   121   122   123   124   125