Page 11 - E MODUL final
P. 11
Modul Turunan Fungsi Aljabar
KEGIATAN PEMBELAJARAN 1
DEFINISI TURUNAN FUNGSI ALJABAR
A. Tujuan Pembelajaran
Pada pembelajaran kali ini, Ananda akan digiring untuk dapat menemukan
konsep turunan secara mandiri. Selain itu juga Ananda akan diajak untuk dapat
menentukan turunan fungsi aljabar mulai dari yang paling sederhana sampai ke
yang kompleks. Namun tidak usah khawatir, dalam modul ini Ananda akan
mempelajarinya secara bertahap untuk memungkinkan Ananda dapat
mempelajarinya secara mandiri.
B. Uraian Materi
Secara umum Turunan atau Derivatif dalam kalkulus merupakan pengukuran
terhadap bagaimana fungsi berubah seiring perubahan nilai masukan. Secara
khusus lagi turunan mengukur perubahan fungsi yang sangat kecil atau turunan
dapat didefinisikan sebagai perubahan nilai fungsi terhadap nilai masukan untuk
perubahan yang sangat kecil ( mendekati nol ).
Contoh pengamatan perubahan yang mungkin sudah pernah kita lakukan dalah
pengamatan perubahan tinggi kecambah mulai dari hari pertama sampai hari
ketujuh. Perubahan tinggi kecambah kita amati setiap hari, artinya tinggi
kecambah berubah seiring dengan perubahan waktu dalam satuan hari. Jika
perubahan adalah ∆, tinggi adalah h dan waktu adalah t, maka perubahan tinggu
seiring perubahan waktu dapat kita tulis dalam bentuk
∆
.
∆
Apabila pada suatu fungsi = ( ) yang terdefinisi pada selang terbuka I yang
memuat semua bilangan riil. Bila nilai x berubah dari x1 ke x2, maka nilai fungsi
juga akanberubah dari = ( ) ke = ( ). Dengan demikian perubahan
nilai fungsi terhadap nilai x didefinisikan sebagai:
∆ −
=
∆ −
ENI SUBRIANI,S.Pd. 9