Page 105 - Data Science Algorithms in a Week
P. 105

Random Forest


                Tree 3:
                    Root
                    ├── [Temperature=Cold]
                    │ └── [Play=No]
                    ├── [Temperature=Warm]
                    │ ├──[Wind=Strong]
                    │ │ └──[Play=No]
                    │ ├── [Wind=None]
                    │ │ └── [Play=Yes]
                    │ └──[Wind=Breeze]
                    │   └── [Play=Yes]
                    └── [Temperature=Hot]
                      ├── [Wind=Strong]
                      │ └── [Play=Yes]
                      └── [Wind=Breeze]
                        └── [Play=Yes]
                The total number of trees in the random forest=4.
                The maximum number of the variables considered at the node is m=4.
            Classification:

            Given the constructed random forest we classify feature ['Warm', 'Strong', 'Sunny',
            '?']:

                      Tree 0 votes for the class: No
                      Tree 1 votes for the class: No
                      Tree 2 votes for the class: No
                      Tree 3 votes for the class: No

            The class with the maximum number of votes is 'No'. Thus the constructed random forest
            classifies the feature ['Warm', 'Strong', 'Sunny', '?'] into the class 'No'.
            Input:

            To perform the preceding analysis, we use a program implemented earlier in this chapter.
            First we put the data from the table into the following CSV file:

                # source_code/4/chess.csv
                Temperature,Wind,Sunshine,Play
                Cold,Strong,Cloudy,No
                Warm,Strong,Cloudy,No
                Warm,None,Sunny,Yes
                Hot,None,Sunny,No
                Hot,Breeze,Cloudy,Yes
                Warm,Breeze,Sunny,Yes
                Cold,Breeze,Cloudy,No


                                                     [ 93 ]
   100   101   102   103   104   105   106   107   108   109   110