Page 128 - Data Science Algorithms in a Week
P. 128

Clustering into K Clusters


            Output for three clusters:

                $ python k-means_clustering.py house_ownership2.csv 3 last
                The total number of steps: 3
                The history of the algorithm:
                Step number 0: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),
                ((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625, 0.48),
                0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 0), ((0.625,
                0.3), 1), ((0.9375, 0.5), 1)]
                centroids = [(0.09375, 0.2), (1.0, 0.0), (0.46875, 1.0)]
                Step number 1: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 1),
                ((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625, 0.48),
                0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 2), ((0.625,
                0.3), 1), ((0.9375, 0.5), 1)]
                centroids = [(0.1953125, 0.355), (0.859375, 0.225), (0.3645833333333333,
                0.7999999999999999)]
                Step number 2: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 1),
                ((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625, 0.48),
                0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 2), ((0.625,
                0.3), 1), ((0.9375, 0.5), 1)]
                centroids = [(0.125, 0.33999999999999997), (0.79375, 0.188), (0.2734375,
                0.7749999999999999)]





































                                                    [ 116 ]
   123   124   125   126   127   128   129   130   131   132   133