Page 172 - Data Science Algorithms in a Week
P. 172

Time Series Analysis


                             17.900000, 19.200000, 18.800000, 20.400000, 23.000000,
                             16.500000, 17.900000, 19.600000, 20.200000, 19.100000,
                             19.700000, 19.700000, 20.500000, 20.300000, 20.300000,
                             22.400000, 23.800000, 18.900000, 19.500000, 19.800000,
                             19.700000, 20.800000, 21.100000, 21.000000, 21.000000,
                             20.600000, 21.400000, 23.700000, 24.600000, 20.000000,
                             20.800000, 22.100000, 20.900000, 21.500000, 22.100000,
                             22.600000, 22.700000, 21.900000, 22.900000, 24.000000,
                             26.600000)
                )

                model = lm(sale ~ year, data = sales)
                print(model)

            Output:
                $ Rscript sales_year.r
                Call:
                lm(formula = sale ~ year, data = sales)
                Coefficients: (Intercept)      year
                                -2557.778     1.279
            Therefore, the equation of the trend line is:

            sales = 1.279*year-2557.778
            Visualization:

            Now we add the trend line to the graph:




























                                                    [ 160 ]
   167   168   169   170   171   172   173   174   175   176   177