Page 176 - Data Science Algorithms in a Week
P. 176

Time Series Analysis


            sales_march = 1.279*(year+2/12) - 2557.778 - 0.464

            = 1.279*(2018+2/12) - 2557.778 - 0.464 = 22.993
            sales_april = 1.279*(year+3/12) - 2557.778 - 0.608

            = 1.279*(2018+3/12) - 2557.778 - 0.608 = 22.956

            sales_may = 1.279*(year+4/12) - 2557.778 - 0.165
            = 1.279*(2018+4/12) - 2557.778 - 0.165 = 23.505

            sales_june = 1.279*(year+5/12) - 2557.778 - 0.321

            = 1.279*(2018+5/12) - 2557.778 - 0.321 = 23.456
            sales_july = 1.279*(year+6/12) - 2557.778 - 0.003

            = 1.279*(2018+6/12) - 2557.778 - 0.003 = 23.881

            sales_august = 1.279*(year+7/12) - 2557.778 - 0.322
            = 1.279*(2018+7/12) - 2557.778 - 0.322 = 23.668

            sales_september = 1.279*(year+8/12) - 2557.778 - 0.116

            = 1.279*(2018+8/12) - 2557.778 - 0.116 = 23.981

            sales_october = 1.279*(year+9/12) - 2557.778 + 0.090
            = 1.279*(2018+9/12) - 2557.778 + 0.090 = 24.293

            sales_november = 1.279*(year+10/12) - 2557.778 + 1.833

            = 1.279*(2018+10/12) - 2557.778 + 1.833 = 26.143
            sales_december = 1.279*(year+11/12) - 2557.778 + 3.552

            = 1.279*(2018+11/12) - 2557.778 + 3.552 = 27.968



            Conclusion
            Therefore, we complete the table with sales for the year 2018 based on the seasonal
            equations above.





                                                    [ 164 ]
   171   172   173   174   175   176   177   178   179   180   181