Page 181 - Data Science Algorithms in a Week
P. 181
Time Series Analysis
2. We use the 12 formulas from the example, one for each month, to predict the
sales for each month in the year 2019:
sales_january = 1.279*(year+0/12) - 2557.778 - 2.401
= 1.279*(2019 + 0/12) - 2557.778 - 2.401 = 22.122
sales_february = 1.279*(2019+1/12) - 2557.778 - 1.358 = 23.272
sales_march = 1.279*(2019+2/12) - 2557.778 - 0.464 = 24.272
sales_april = 1.279*(2019+3/12) - 2557.778 - 0.608 = 24.234
sales_may = 1.279*(2019+4/12) - 2557.778 - 0.165 = 24.784
sales_june = 1.279*(2019+5/12) - 2557.778 - 0.321 = 24.735
sales_july = 1.279*(2019+6/12) - 2557.778 - 0.003 = 25.160
sales_august = 1.279*(2019+7/12) - 2557.778 - 0.322 = 24.947
sales_september = 1.279*(2019+8/12) - 2557.778 - 0.116 = 25.259
sales_october = 1.279*(2019+9/12) - 2557.778 + 0.090 = 25.572
sales_november = 1.279*(2019+10/12) - 2557.778 + 1.833 = 27.422
sales_december = 1.279*(2019+11/12) - 2557.778 + 3.552 = 29.247
[ 169 ]