Page 33 - Data Science Algorithms in a Week
P. 33

18                               Ramazan Ünlü

                       Fischer,  B.,  &  Buhmann,  J.  M.  (2003).  Bagging  for  path-based  clustering.  IEEE
                          Transactions on pattern analysis and machine intelligence, 25(11), 1411-1415.
                       Fred, A. (2001). Finding consistent clusters in data partitions International Workshop on
                          Multiple Classifier Systems (pp. 309-318): Springer.
                       Fred,  A.  L.,  &  Jain,  A.  K.  (2005).  Combining  multiple  clusterings  using  evidence
                          accumulation.  IEEE  Transactions  on  pattern  analysis  and  machine  intelligence,
                          27(6), 835-850.
                       Ghaemi, R., Sulaiman, M. N., Ibrahim, H., & Mustapha, N. (2009). A survey: clustering
                          ensembles techniques. World Academy of Science, Engineering and Technology, 50,
                          636-645.
                       Gluck, M. (1989). Information, uncertainty and the utility of categories. Paper presented
                          at the Proc. of the 7th Annual Conf. of Cognitive Science Society.
                       Grira, N., Crucianu, M., & Boujemaa, N. (2005). Active semi-supervised fuzzy clustering
                          for image database categorization Proceedings of the 7th ACM SIGMM international
                          workshop on Multimedia information retrieval (pp. 9-16): ACM.
                       Gupta,  M.,  &  Verma,  D.  (2014).  A  Novel  Ensemble  Based  Cluster  Analysis  Using
                          Similarity  Matrices  &  Clustering  Algorithm  (SMCA).  International  Journal  of
                          Computer Application, 100(10), 1-6.
                       Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate diversity for
                          better cluster ensembles. Information Fusion, 7(3), 264-275.
                       Haghtalab, S., Xanthopoulos, P., & Madani, K. (2015). A robust unsupervised consensus
                          control  chart  pattern  recognition  framework.  Expert  Systems  with  Applications,
                          42(19), 6767-6776.
                       Hong, Y., Kwong, S., Chang, Y., & Ren, Q. (2008). Unsupervised feature selection using
                          clustering ensembles and population based incremental learning algorithm. Pattern
                          Recognition, 41(9), 2742-2756.
                       Hu, X., Yoo, I., Zhang, X., Nanavati, P., & Das, D. (2005). Wavelet transformation and
                          cluster ensemble for gene expression analysis. International journal of bioinformatics
                          research and applications, 1(4), 447-460.
                       Huang,  D.,  Lai,  J.,  &  Wang,  C.-D.  (2016).  Ensemble  clustering  using  factor  graph.
                          Pattern Recognition, 50, 131-142.
                       Huang, D., Wang, C.-D., & Lai, J.-H. (2016). Locally Weighted Ensemble Clustering.
                          arXiv preprint arXiv:1605.05011.
                       Iam-On, N., Boongeon, T., Garrett, S., & Price, C. (2012). A link-based cluster ensemble
                          approach for categorical data clustering. IEEE Transactions on knowledge and data
                          engineering, 24(3), 413-425.
                       Iam-On,  N.,  &  Boongoen,  T.  (2012).  Improved  link-based  cluster  ensembles  Neural
                          Networks (IJCNN), The 2012 International Joint Conference on (pp. 1-8): IEEE.
   28   29   30   31   32   33   34   35   36   37   38