Page 36 - Data Science Algorithms in a Week
P. 36

Unsupervised Ensemble Learning                       21

                       Srivastava,  J.,  Cooley,  R.,  Deshpande,  M.,  &  Tan,  P.-N.  (2000).  Web  usage  mining:
                          Discovery  and  applications  of  usage  patterns  from  web  data.  Acm  Sigkdd
                          Explorations Newsletter, 1(2), 12-23.
                       Strehl, A., & Ghosh, J. (2002). Cluster ensembles — a knowledge reuse framework for
                          combining multiple partitions. Journal of machine learning research, 3(Dec), 583-
                          617.
                       Su, P., Shang, C., & Shen, Q. (2015). A hierarchical fuzzy cluster ensemble approach and
                          its application to big data clustering. Journal of Intelligent & Fuzzy Systems, 28(6),
                          2409-2421.
                       Sukegawa, N., Yamamoto, Y., & Zhang, L. (2013). Lagrangian relaxation and pegging
                          test  for  the  clique  partitioning  problem.  Advances  in  Data  Analysis  and
                          Classification, 7(4), 363-391.
                       Topchy, A., Jain, A. K., & Punch, W. (2003). Combining multiple weak clusterings Data
                          Mining, 2003. ICDM 2003. Third IEEE International Conference on (pp. 331-338):
                          IEEE.
                       Topchy, A., Jain, A. K., & Punch, W. (2004). A mixture model for clustering ensembles
                          Proceedings of the 2004 SIAM International Conference on Data Mining (pp. 379-
                          390): SIAM.
                       Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: Models of consensus
                          and  weak  partitions.  IEEE  Transactions  on  pattern  analysis  and  machine
                          intelligence, 27(12), 1866-1881.
                       Tumer, K., & Agogino, A. K. (2008). Ensemble clustering with voting active clusters.
                          Pattern Recognition Letters, 29(14), 1947-1953.
                       Ünlü,  R.,  &  Xanthopoulos,  P.  (2016a).  A  novel  weighting  policy  for  unsupervised
                          ensemble  learning  based  on  Markowitz  portfolio  theory.  Paper  presented  at  the
                          INFORMS 2016, Nashville, TN.
                       Ünlü, R., & Xanthopoulos, P. (2016b). A weighted framework for unsupervised ensemble
                          learning based on internal quality measures. Manuscript submitted for publication.
                       Vega-Pons,  S.,  Correa-Morris,  J.,  &  Ruiz-Shulcloper,  J.  (2008).  Weighted  cluster
                          ensemble using a kernel consensus function. Progress in Pattern Recognition, Image
                          Analysis and Applications, 195-202.
                       Vega-Pons,  S.,  Correa-Morris,  J.,  &  Ruiz-Shulcloper,  J.  (2010).  Weighted  partition
                          consensus via kernels. Pattern Recognition, 43(8), 2712-2724.
                       Vega-Pons,  S.,  &  Ruiz-Shulcloper,  J.  (2009).  Clustering  ensemble  method  for
                          heterogeneous partitions. Paper presented at the Iberoamerican Congress on Pattern
                          Recognition.
                       Vega-Pons,  S.,  &  Ruiz-Shulcloper,  J.  (2011).  A  survey  of  clustering  ensemble
                          algorithms. International Journal of Pattern Recognition and Artificial Intelligence,
                          25(03), 337-372.
   31   32   33   34   35   36   37   38   39   40   41