Page 36 - Data Science Algorithms in a Week
P. 36
Unsupervised Ensemble Learning 21
Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining:
Discovery and applications of usage patterns from web data. Acm Sigkdd
Explorations Newsletter, 1(2), 12-23.
Strehl, A., & Ghosh, J. (2002). Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. Journal of machine learning research, 3(Dec), 583-
617.
Su, P., Shang, C., & Shen, Q. (2015). A hierarchical fuzzy cluster ensemble approach and
its application to big data clustering. Journal of Intelligent & Fuzzy Systems, 28(6),
2409-2421.
Sukegawa, N., Yamamoto, Y., & Zhang, L. (2013). Lagrangian relaxation and pegging
test for the clique partitioning problem. Advances in Data Analysis and
Classification, 7(4), 363-391.
Topchy, A., Jain, A. K., & Punch, W. (2003). Combining multiple weak clusterings Data
Mining, 2003. ICDM 2003. Third IEEE International Conference on (pp. 331-338):
IEEE.
Topchy, A., Jain, A. K., & Punch, W. (2004). A mixture model for clustering ensembles
Proceedings of the 2004 SIAM International Conference on Data Mining (pp. 379-
390): SIAM.
Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: Models of consensus
and weak partitions. IEEE Transactions on pattern analysis and machine
intelligence, 27(12), 1866-1881.
Tumer, K., & Agogino, A. K. (2008). Ensemble clustering with voting active clusters.
Pattern Recognition Letters, 29(14), 1947-1953.
Ünlü, R., & Xanthopoulos, P. (2016a). A novel weighting policy for unsupervised
ensemble learning based on Markowitz portfolio theory. Paper presented at the
INFORMS 2016, Nashville, TN.
Ünlü, R., & Xanthopoulos, P. (2016b). A weighted framework for unsupervised ensemble
learning based on internal quality measures. Manuscript submitted for publication.
Vega-Pons, S., Correa-Morris, J., & Ruiz-Shulcloper, J. (2008). Weighted cluster
ensemble using a kernel consensus function. Progress in Pattern Recognition, Image
Analysis and Applications, 195-202.
Vega-Pons, S., Correa-Morris, J., & Ruiz-Shulcloper, J. (2010). Weighted partition
consensus via kernels. Pattern Recognition, 43(8), 2712-2724.
Vega-Pons, S., & Ruiz-Shulcloper, J. (2009). Clustering ensemble method for
heterogeneous partitions. Paper presented at the Iberoamerican Congress on Pattern
Recognition.
Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble
algorithms. International Journal of Pattern Recognition and Artificial Intelligence,
25(03), 337-372.