Page 34 - Data Science Algorithms in a Week
P. 34

Unsupervised Ensemble Learning                       19

                       Iam-On,  N.,  Boongoen,  T.,  &  Garrett,  S.  (2010).  LCE:  a  link-based  cluster  ensemble
                          method  for improved  gene  expression  data  analysis. Bioinformatics,  26(12),  1513-
                          1519.
                       Jain, A. (1999). Data Clusterting: A Review ACM Computing Surveys, vol. 31.
                       Jain,  A.  K.,  Murty,  M.  N.,  &  Flynn,  P.  J.  (1999).  Data  clustering:  a  review.  ACM
                          computing surveys (CSUR), 31(3), 264-323.
                       Jing,  L.,  Tian,  K.,  &  Huang,  J.  Z.  (2015).  Stratified  feature  sampling  method  for
                          ensemble  clustering  of  high  dimensional  data.  Pattern  Recognition,  48(11),  3688-
                          3702.
                       Kang,  Q.,  Liu,  S.,  Zhou,  M.,  &  Li,  S.  (2016).  A  weight-incorporated  similarity-based
                          clustering ensemble method based on swarm intelligence. Knowledge-Based Systems,
                          104, 156-164.
                       Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms: John
                          Wiley & Sons.
                       Karypis,  G.,  Aggarwal,  R.,  Kumar,  V.,  &  Shekhar,  S.  (1999).  Multilevel  hypergraph
                          partitioning: applications in VLSI domain. IEEE Transactions on Very Large Scale
                          Integration (VLSI) Systems, 7(1), 69-79.
                       Kennedy, J. (2011). Particle swarm optimization Encyclopedia of machine learning (pp.
                          760-766): Springer.
                       Křivánek, M., & Morávek, J. (1986). NP-hard problems in hierarchical-tree clustering.
                          Acta informatica, 23(3), 311-323.
                       Lancichinetti,  A.,  &  Fortunato,  S.  (2012).  Consensus  clustering  in  complex  networks.
                          Scientific reports, 2.
                       Leskovec,  J.,  Rajaraman,  A.,  &  Ullman,  J.  D.  (2014).  Mining  of  massive  datasets:
                          Cambridge University Press.
                       Li, T., & Ding, C. (2008). Weighted consensus clustering Proceedings of the 2008 SIAM
                          International Conference on Data Mining (pp. 798-809): SIAM.
                       Li,  T.,  Ding,  C.,  &  Jordan,  M.  I.  (2007).  Solving  consensus  and  semi-supervised
                          clustering  problems  using  nonnegative  matrix  factorization  Data  Mining,  2007.
                          ICDM 2007. Seventh IEEE International Conference on (pp. 577-582): IEEE.
                       Li, T., Ogihara, M., & Ma, S. (2010). On combining multiple clusterings: an overview
                          and a new perspective. Applied Intelligence, 33(2), 207-219.
                       Liu, H., Cheng, G., & Wu, J. (2015). Consensus Clustering on big data Service Systems
                          and Service Management (ICSSSM), 2015 12th International Conference on (pp. 1-
                          6): IEEE.
                       Lock,  E.  F.,  &  Dunson,  D.  B.  (2013).  Bayesian  consensus  clustering.  Bioinformatics,
                          btt425.
                       Lourenço, A., Bulò, S. R., Rebagliati, N., Fred, A. L., Figueiredo, M. A., & Pelillo, M.
                          (2015).  Probabilistic  consensus  clustering  using  evidence  accumulation.  Machine
                          Learning, 98(1-2), 331-357.
   29   30   31   32   33   34   35   36   37   38   39