Page 34 - Data Science Algorithms in a Week
P. 34
Unsupervised Ensemble Learning 19
Iam-On, N., Boongoen, T., & Garrett, S. (2010). LCE: a link-based cluster ensemble
method for improved gene expression data analysis. Bioinformatics, 26(12), 1513-
1519.
Jain, A. (1999). Data Clusterting: A Review ACM Computing Surveys, vol. 31.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM
computing surveys (CSUR), 31(3), 264-323.
Jing, L., Tian, K., & Huang, J. Z. (2015). Stratified feature sampling method for
ensemble clustering of high dimensional data. Pattern Recognition, 48(11), 3688-
3702.
Kang, Q., Liu, S., Zhou, M., & Li, S. (2016). A weight-incorporated similarity-based
clustering ensemble method based on swarm intelligence. Knowledge-Based Systems,
104, 156-164.
Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms: John
Wiley & Sons.
Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1999). Multilevel hypergraph
partitioning: applications in VLSI domain. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 7(1), 69-79.
Kennedy, J. (2011). Particle swarm optimization Encyclopedia of machine learning (pp.
760-766): Springer.
Křivánek, M., & Morávek, J. (1986). NP-hard problems in hierarchical-tree clustering.
Acta informatica, 23(3), 311-323.
Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks.
Scientific reports, 2.
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets:
Cambridge University Press.
Li, T., & Ding, C. (2008). Weighted consensus clustering Proceedings of the 2008 SIAM
International Conference on Data Mining (pp. 798-809): SIAM.
Li, T., Ding, C., & Jordan, M. I. (2007). Solving consensus and semi-supervised
clustering problems using nonnegative matrix factorization Data Mining, 2007.
ICDM 2007. Seventh IEEE International Conference on (pp. 577-582): IEEE.
Li, T., Ogihara, M., & Ma, S. (2010). On combining multiple clusterings: an overview
and a new perspective. Applied Intelligence, 33(2), 207-219.
Liu, H., Cheng, G., & Wu, J. (2015). Consensus Clustering on big data Service Systems
and Service Management (ICSSSM), 2015 12th International Conference on (pp. 1-
6): IEEE.
Lock, E. F., & Dunson, D. B. (2013). Bayesian consensus clustering. Bioinformatics,
btt425.
Lourenço, A., Bulò, S. R., Rebagliati, N., Fred, A. L., Figueiredo, M. A., & Pelillo, M.
(2015). Probabilistic consensus clustering using evidence accumulation. Machine
Learning, 98(1-2), 331-357.