Page 35 - Data Science Algorithms in a Week
P. 35

20                               Ramazan Ünlü

                       Luo, H., Jing, F., & Xie, X. (2006). Combining multiple clusterings using information
                          theory  based  genetic  algorithm  Computational  Intelligence  and  Security,  2006
                          International Conference on (Vol. 1, pp. 84-89): IEEE.
                       MacQueen,  J.  (1967).  Some  methods  for  classification  and  analysis  of  multivariate
                          observations. Paper presented at the Proceedings of the fifth Berkeley symposium on
                          mathematical statistics and probability.
                       McQuitty, L. L. (1957). Elementary linkage analysis for isolating orthogonal and oblique
                          types  and  typal  relevancies.  Educational  and  Psychological  Measurement,  17(2),
                          207-229.
                       Mirkin, B. (2001). Reinterpreting the category utility function. Machine Learning, 45(2),
                          219-228.
                       Naldi,  M.  C.,  Carvalho,  A.  C.,  &  Campello,  R.  J.  (2013).  Cluster  ensemble  selection
                          based on relative validity indexes. Data mining and knowledge discovery, 1-31.
                       Nayak, J., Naik, B., & Behera, H. (2015). Fuzzy C-means (FCM) clustering algorithm: a
                          decade  review  from  2000  to  2014  Computational  Intelligence  in  Data  Mining-
                          Volume 2 (pp. 133-149): Springer.
                       Parvin,  H.,  Minaei-Bidgoli,  B.,  Alinejad-Rokny,  H.,  &  Punch,  W.  F.  (2013).  Data
                          weighing  mechanisms  for  clustering  ensembles.  Computers  &  Electrical
                          Engineering, 39(5), 1433-1450.
                       Punera, K., & Ghosh, J. (2008). Consensus-based ensembles of soft clusterings. Applied
                          Artificial Intelligence, 22(7-8), 780-810.
                       Rashedi,  E.,  &  Mirzaei,  A.  (2011).  A  novel  multi-clustering  method  for  hierarchical
                          clusterings  based  on  boosting  Electrical  Engineering  (ICEE),  2011  19th  Iranian
                          Conference on (pp. 1-4): IEEE.
                       Rashedi, E., & Mirzaei, A. (2013). A hierarchical clusterer ensemble method based on
                          boosting theory. Knowledge-Based Systems, 45, 83-93.
                       Ren,  Y.,  Domeniconi,  C.,  Zhang,  G.,  &  Yu,  G.  (2016).  Weighted-object  ensemble
                          clustering: methods and analysis. Knowledge and Information Systems, 1-29.
                       Sadeghian,  A.  H.,  &  Nezamabadi-pour,  H.  (2014).  Gravitational  ensemble  clustering
                          Intelligent Systems (ICIS), 2014 Iranian Conference on (pp. 1-6): IEEE.
                       Saeed,  F.,  Ahmed,  A.,  Shamsir,  M.  S.,  &  Salim,  N.  (2014).  Weighted  voting-based
                          consensus  clustering  for  chemical  structure  databases.  Journal  of  computer-aided
                          molecular design, 28(6), 675-684.
                       Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial
                          databases: The algorithm gdbscan and its applications. Data mining and knowledge
                          discovery, 2(2), 169-194.
                       Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions
                          on pattern analysis and machine intelligence, 22(8), 888-905.
   30   31   32   33   34   35   36   37   38   39   40