Page 31 - DIGITAL BOOK MUHAMMAD AZWARDI NASUTION
P. 31

EXAMPLE 9:

          An arithmetic series, prove


          a. U    n+m     +U    n-m     = 2U      n

          b. S   n+3   -3S    n+2    + 3S     n+1   -S =0
                                                        n
          c. S   n+2   -S =2a+b(2n+1)
                           n
          Proof:


          a)a+(n+m-1)b+a+(n-m-1)b


            =2a+(n+m-1+n-m-1)b

            =2a+(2n-2m-2)b


            =2{a+(n-1)b}

            =2U      n


          b)S    n+3   -S  n+2  -2(S     n+2    – S   n+1   )+S    n+1  -S  n


              =(U    n+3   -U   n+2  ) –(U      n+2   - U   n+1  )=b – b =0

          c)S    n+2   -S n+1   +S    n+1  -S  n


              =U    n+2    + U    n+1

              = a+(n+2-1)b + a + (n+1-1)b


              =2a+(n+1+n)b


              =2a+(2n+1)b
   26   27   28   29   30   31   32   33   34   35   36