Page 31 - DIGITAL BOOK MUHAMMAD AZWARDI NASUTION
P. 31
EXAMPLE 9:
An arithmetic series, prove
a. U n+m +U n-m = 2U n
b. S n+3 -3S n+2 + 3S n+1 -S =0
n
c. S n+2 -S =2a+b(2n+1)
n
Proof:
a)a+(n+m-1)b+a+(n-m-1)b
=2a+(n+m-1+n-m-1)b
=2a+(2n-2m-2)b
=2{a+(n-1)b}
=2U n
b)S n+3 -S n+2 -2(S n+2 – S n+1 )+S n+1 -S n
=(U n+3 -U n+2 ) –(U n+2 - U n+1 )=b – b =0
c)S n+2 -S n+1 +S n+1 -S n
=U n+2 + U n+1
= a+(n+2-1)b + a + (n+1-1)b
=2a+(n+1+n)b
=2a+(2n+1)b