Page 68 - CJO_F17_GLAUCOMA_SUPPLEMENT
P. 68

C  CLINICAL RESEARCH



                  ning protocols for diagnosing preperimetric GlaucomaSDOCT   2014;91(11):1320-1327.
                  for preperimetric glaucoma diagnosis. Invest Ophthalmol Vis Sci.   256. Sullivan-Mee M, Ruegg CC, Pensyl D, Halverson K, Qualls C. Diag-
                  2013;54(5):3417-3425.                        nostic precision of retinal nerve fiber layer and macular thickness
               235. Dong ZM, Wollstein G, Schuman JS. Clinical utility of optical co-  asymmetry parameters for identifying early primary open-angle
                  herence tomography in GlaucomaOptical coherence tomography in   glaucoma. Am J Ophthalmol. 2013;156(3):567-577. e1.
                  glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT556-OCT567.  257. Kim YK, Yoo BW, Jeoung JW, Kim HC, Kim HJ, Park KH. Glauco-
               236. Mwanza JC, Budenz DL. Optical coherence tomography platforms   ma-diagnostic ability of ganglion cell-inner plexiform layer thick-
                  and parameters for glaucoma diagnosis and progression. Curr Opin   ness difference across temporal raphe in highly myopic EyesGCIPL
                  Ophthalmol. 2016;27(2):102-110.              hemifield test in highly myopic glaucoma. Invest Ophthalmol Vis
               237. Leung CK, Lam S, Weinreb RN, et al. Retinal nerve fiber layer   Sci. 2016;57(14):5856-5863.
                  imaging with spectral-domain optical coherence tomography:   258. Prager AJ, Hood DC, Liebmann JM, et al. Association of glaucoma-
                  Analysis of the retinal nerve fiber layer map for glaucoma detection.   related, optical coherence tomography–measured macular damage
                  Ophthalmology. 2010;117(9):1684-1691.        with vision-related quality of life. JAMA ophthalmology. 2017.
               238. Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imag-  259. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R.
                  ing with spectral-domain optical coherence tomography: Interpret-  Early glaucoma involves both deep local, and shallow widespread,
                  ing the RNFL maps in healthy myopic EyesInterpreting RNFL maps   retinal nerve fiber damage of the macular RegionCircumpapillary
                  in myopic eyes. Invest Ophthalmol Vis Sci. 2012;53(11):7194-7200.  glaucomatous defects. Invest Ophthalmol Vis Sci. 2014;55(2):632-
               239. Sayed MS, Margolis M, Lee RK. Green disease in optical coher-  649.
                  ence tomography diagnosis of glaucoma. Curr Opin Ophthalmol.   260. Traynis I, De Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood
                  2017;28(2):139-153.                          DC. Prevalence and nature of early glaucomatous defects in the
               240. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Wein-  central 10 of the visual field. JAMA ophthalmology. 2014;132(3):291-
                  reb RN. Evaluation of retinal nerve fiber layer, optic nerve head,   297.
                  and macular thickness measurements for glaucoma detection using  261. Hwang YH, Kim MK. Segmentation errors in macular ganglion cell
                  optical coherence tomography. Am J Ophthalmol. 2005;139(1):44-  analysis as determined by optical coherence tomography. Ophthal-
                  55.                                          mology. 2016;123(5):950-958.
               241. Mwanza J, Durbin MK, Budenz DL, Cirrus OCT Normative Data-  262. Nouri-Mahdavi K. Selecting visual field tests and assessing visual
                  base Study Group. Interocular symmetry in peripapillary retinal   field deterioration in glaucoma. Canadian Journal of Ophthalmol-
                  nerve fiber layer thickness measured with the cirrus HD-OCT in   ogy/Journal Canadien d’Ophtalmologie. 2014;49(6):497-505.
                  healthy eyes. Am J Ophthalmol. 2011;151(3):514-521. e1.  263. Liu S, Lam S, Weinreb RN, et al. Comparison of standard automated
               242. Field MG, Alasil T, Baniasadi N, et al. Facilitating glaucoma diagno-  perimetry, frequency-doubling technology perimetry, and short-
                  sis with intereye retinal nerve fiber layer asymmetry using spectral-  wavelength automated perimetry for detection of glaucoma. Invest
                  domain optical coherence tomography. J Glaucoma. 2016;25(2):167-  Ophthalmol Vis Sci. 2011;52(10):7325-7331.
                  176.                                      264. Medeiros FA, Sample PA, Weinreb RN. Frequency doubling
               243. Kotowski J, Wollstein G, Folio LS, Ishikawa H, Schuman JS. Clinical   technology perimetry abnormalities as predictors of glaucomatous
                  use of OCT in assessing glaucoma progression. Ophthalmic Surgery,   visual field loss. Am J Ophthalmol. 2004;137(5):863-871.
                  Lasers and Imaging Retina. 2011;42(4):S6-S14.  265. Bengtsson B, Olsson J, Heijl A, Rootzén H. A new generation of
               244. Leung CK, Choi N, Weinreb RN, et al. Retinal nerve fiber layer im-  algorithms for computerized threshold perimetry, SITA. Acta Oph-
                  aging with spectral-domain optical coherence tomography: Pattern   thalmol. 1997;75(4):368-375.
                  of RNFL defects in glaucoma. Ophthalmology. 2010;117(12):2337-  266. Saunders LJ, Russell RA, Crabb DP. Measurement precision in a se-
                  2344.                                        ries of visual fields acquired by the standard and fast versions of the
               245. Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of para-  swedish interactive thresholding algorithm: Analysis of large-scale
                  papillary atrophy: Beta zone and gamma ZoneParapapillary atrophy.   data from clinics. JAMA ophthalmology. 2015;133(1):74-80.
                  Invest Ophthalmol Vis Sci. 2013;54(3).    267. Artes PH, O’Leary N, Nicolela MT, Chauhan BC, Crabb DP. Visual
               246. Hayashi K, Tomidokoro A, Lee KY, et al. Spectral-domain optical   field progression in glaucoma: What is the specificity of the guided
                  coherence tomography ofβ-zone peripapillary atrophy: Influence   progression analysis? Ophthalmology. 2014;121(10):2023-2027.
                  of myopiaand glaucoma. Invest Ophthalmol Vis Sci. 2012;53(3):1499-  268. Bengtsson B, Heijl A. False-negative responses in glaucoma perim-
                  1505.                                        etry: Indicators of patient performance or test reliability? Invest
               247. Miki A, Ikuno Y, Weinreb RN, et al. Measurements of the parapapil-  Ophthalmol Vis Sci. 2000;41(8):2201-2204.
                  lary atrophy zones in en face optical coherence tomography images.   269. Rao HL, Yadav RK, Begum VU, et al. Role of visual field reli-
                  PloS one. 2017;12(4):e0175347.               ability indices in ruling out glaucoma. JAMA ophthalmology.
               248. Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia   2015;133(1):40-44.
                  on the performance of SD-OCT parameters to detect glaucoma.   270. Saunders LJ ea. Detecting visual field progression in glaucoma
                  Graefe’s Archive for Clinical and Experimental Ophthalmology.   – using the right tools for the job. European Ophthalmic Review.
                  2012;250(12):1843-1849.                      2013;7(1):20–6.
               249. Hung KC, Wu PC, Poon YC, et al. Macular diagnostic ability   271. Katz J, Sommer A, Gaasterland DE, Anderson DR. Comparison of
                  in OCT for assessing glaucoma in high myopia. Optom Vis Sci.   analytic algorithms for detecting glaucomatous visual field loss.
                  2016;93(2):126-135.                          Arch Ophthalmol. 1991;109(12):1684-1689.
               250. Hwang YH, Kim YY, Kim HK, Sohn YH. Changes in retinal nerve   272. Åsman P, Heijl A. Glaucoma hemifield test: Automated visual field
                  fiber layer thickness after optic disc hemorrhage in glaucomatous   evaluation. Arch Ophthalmol. 1992;110(6):812-819.
                  eyes. J Glaucoma. 2014;23(8):547-552.     273. Henson DB, Artes PH, Chauhan BC. Diffuse loss of sensitivity in
               251. Aulhorn E, Karmeyer H. Frequency distribution in early glaucoma-  early glaucoma. Invest Ophthalmol Vis Sci. 1999;40(13):3147-3151.
                  tous visual field defects. Doc Ophthalmol Proc Ser. 1977;14:75-83.  274. Caprioli J, Sears M. Patterns of early visual field loss in open-angle
               252. Hood DC, Raza AS, de Moraes, Carlos Gustavo V, Liebmann JM,   glaucoma. Trans Am Ophthalmol Soc. 1986;84:133-145.
                  Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res.   275. Keltner JL, Johnson CA, Quigg JM, Cello KE, Kass MA, Gordon
                  2013;32:1-21.                                MO. Confirmation of visual field abnormalities in the ocular hyper-
               253. Hood DC, Raza AS, de Moraes, Carlos Gustavo V, et al. Initial   tension treatment study. Arch Ophthalmol. 2000;118(9):1187-1194.
                  arcuate defects within the central 10 degrees in glaucoma. Invest   276. Schiefer U, Papageorgiou E, Sample PA, et al. Spatial pattern of
                  Ophthalmol Vis Sci. 2011;52(2):940-946.      glaucomatous visual field loss obtained with regionally condensed
               254. Mwanza J, Durbin MK, Budenz DL, et al. Glaucoma diagnostic ac-  stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51(11):5685-
                  curacy of ganglion cell–inner plexiform layer thickness: Compari-  5689.
                  son with nerve fiber layer and optic nerve head. Ophthalmology.   277. Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of henle
                  2012;119(6):1151-1158.                       fibers in the human retina and a model of ganglion receptive field
               255. Jung HH, Sung MS, Heo H, Park SW. Macular inner plexiform   density in the visual field. Vision Res. 2007;47(22):2901-2911.
                  and retinal nerve fiber layer thickness in glaucoma. Optom Vis Sci.   278. Grillo LM, Wang DL, Ramachandran R, et al. The 24-2 visual field
                                                               test misses central macular damage confirmed by the 10-2 visual



      68             CANADIAN JOURNAL of OPTOMETRY    |    REVUE CANADIENNE D’OPTOMÉTRIE    VOL. 79  SUPPLEMENT 1, 2017
   63   64   65   66   67   68   69   70   71   72