Page 69 - Programmable Logic Controllers, Fifth Edition
P. 69

Table 3-3 1’s and 2’s Complement Representation
                                of Positive and Negative Numbers
                               Signed             1’s                 2’s                    2’s
                              Decimal        Complement          Complement          Complement-16 bit

                                 +7                                0111                                   0111   0000 0000 0000 0111
                                 +6                                0110                                   0110   0000 0000 0000 0110
                                 +5                                0101                                   0101   0000 0000 0000 0101
                                                             Same as
                                 +4                                0100                                   0100   0000 0000 0000 0100
                                                             binary
                                 +3                                0011                                   0011   0000 0000 0000 0011
                                                             numbers
                                 +2                                0010                                   0010   0000 0000 0000 0010
                                 +1                                0001                                   0001   0000 0000 0000 0001
                                   0                                0000                                   0000   0000 0000 0000 0000
                                 −1                                1110                                   1111   1111 1111 1111 1111
                                 −2                                1101                                   1110   1111 1111 1111 1110
                                 −3                                1100                                   1101   1111 1111 1111 1101
                                 −4                                1011                                   1100   1111 1111 1111 1100
                                 −5                                1010                                   1011   1111 1111 1111 1011
                                 −6                                1001                                   1010   1111 1111 1111 1010
                                 −7                                1000                                   1001   1111 1111 1111 1001






                 Table 3-4 Binary and Related Octal                      Octal
                 Code                                                    number      4   6   2

                              Binary           Octal

                                000                           0         1  0   0      1  1   0      0  1   0     Binary
                                                                                                                 number
                                001                           1
                                                                     Figure 3-9  Converting an octal number to a binary number.
                                010                           2
                                011                           3
                                100                           4
                                101                           5      Notice the simplicity of the notation: the octal 462 is much
                                110                           6      easier to read and write than its binary equivalent is.
                                111                           7

                                                                     3.5  Hexadecimal System
                                                                     The hexadecimal (hex) numbering system is used in pro-
                             4   6  2
                                       8                             grammable controllers because a word of data consists of
                    Octal                    0                       16 data bits, or two 8-bit bytes. The hexadecimal system
                    number               2 × 8 = 2 × 1  =  2         is a base 16 system, with A to F used to represent decimal
                                             1
                                         6 × 8 = 6 × 8 =  48         numbers 10 to 15 (Table 3-5). The hexadecimal number-
                                             2
                                         4 × 8 = 4 × 64 =  256       ing system allows the status of a large number of binary
                                                                     bits to be represented in a small space, such as on a com-
                                      Decimal  number  306 10        puter screen or PLC programming device display.
                                                 (Sum of products)      The techniques used when converting hexadecimal
               Figure 3-8  Converting an octal number to a decimal   to decimal and decimal to hexadecimal are the same as
               number.                                               those used for binary and octal. To convert a hexadecimal





               50         Chapter 3  Number Systems and Codes







          pet73842_ch03_046-060.indd   50                                                                               03/11/15   3:50 PM
   64   65   66   67   68   69   70   71   72   73   74