Page 186 - ISCI’2017
P. 186

2 ;
                                  =  ( 0·385 0·616 2·1100 1·980 mod 1540 100)+  +  +  =  <  M =  40
                          
                                               
                                                                                 ·
                          A 2SRC  =  (0 ||0 || 2 ||1 =  )  A 2PNS  =  (а 1 ·В +  12  аВ +  2 ·  22  а 3 ·В +  32  аВ 42 ) mod M =  2
                                                                                4
                                                                                      2 ;
                                               +
                                                       +
                                        +
                                =  ( 0·385 0·231 2·330 1·210 mod 1155 870)  =  >  M =  40
                          
                                               
                                                                                 ·
                          A 3SRC  =  (0 ||0 || 2 ||1 =  )  A 3PNS  =  (а 1 ·В +  13  аВ +  2 ·  23  а 3 ·В +  33  аВ 43 ) mod M =  3
                                                                                4
                                                                                      2 ;
                                =  ( 0·616 0·693 2·792 1·672 mod 924)+  +  +  =  418 <  M =  40
                          
                                               
                          A 4SRC  =  ( 0 ||0 ||0 ||1) =  A 4PNS  =  (аВ +  1 ·  14  а 2 ·В +  24  а 3 ·В +  34  а 4 ·В 44 ) mod M =  4
                                                                                      2 ;
                                =  ( 0·220 0·165 2·396 1·540 mod660 540)+  +  +  =  >  M =  40
                                               
                          
                          A 5SRC  =  ( 0 ||0 ||0 || 2) =  A 5PNS  =  (аВ +  1 ·  15  а 2 ·В +  25  а 3 ·В +  35  а 4 ·В 45 ) mod M =  5
                                                                                         2 .
                                                                 )
                                                   +
                                           +
                                                          +
                                   =  ( 0·280 0·105 2·336 1·120 mod 420 =    240 <  M =  40
                                                    
               As a result of calculations of values  A j PNS   and comparing them with the value  M =  420 of the
            interval length [0,420)  of processing of correct numbers  A SRC  in SRC we obtain the following.
               Set of residuals  a = ,  a =  is correct (residuals are not distorted), and the residuals  a = ,
                                            0
                                    0
                                                                                                           0
                                 2
                                                                                                       1
                                        4
                                                    
             a = 0 and  a = 1 of the wrong number  A 3180  =  (0 ||0 ||0 || 2 ||1) may be distorted (may be wrong).
              3
                         5
                                                                                     
               III. Correction is possible distorted residuals  a ,  a  и  a  of the number  A 3180 .
                                                                3
                                                            1
                                                                     5
                                                                                0
               It is necessary to be corrected, possibly distorted residuals  a = ,  a =  and  a =  by the
                                                                                         0
                                                                                                    1
                                                                             1
                                                                                     3
                                                                                                 5
                                m ⋅ (1 rm   )   A     
                                      + ⋅
            formula  a =  i      a +  i    i  n+ 1  −         mod m . Then we have that
                                                            i
                                 m n+ 1  ⋅ m i  B i   
                                m ⋅ (1 rm    )   A               3 (1 r ⋅ 11)  3180   
                                      + ⋅
                                                                        ⋅
                                                                           +
                      a =  1      a +  1    1  n+ 1  −      mod m =  1    0 +     −      mod 3 =
                                  m n+ 1  ⋅  m 1  B 1               11 1 ⋅    1540   
                                                                  ])
                                               ])
                                                                                  )
                                         −
                                                                               +
                             =  (0 +  [3,27 2,06 mod 3 =  (0 +  [1,21 mod 3 =  (0 1 mod 3 1.
                                                                                         =
                               1
               In this way  a = .  For value  a  we have
                            1
                                              3
                                m ⋅ (1 rm    )   A                5 (1 r ⋅ 11)  3180   
                                                                           +
                                                                        ⋅
                                      + ⋅
                     a =  3      a +  3    3  n+ 1  −      mod m =  3    0 +     −      mod5 =
                                  m n+ 1  ⋅  m 3  B 3               11 4 ⋅     3696   
                                               ])
                                                                                 )
                                                              0,5
                             =  (0 +  [1,36 0,86 mod5 =  (0 +  [ ]) mod5 =  (0 0 mod5 0 .
                                                                                        =
                                         −
                                                                              +
                               0
               In this way  a = .  To obtain the value of the residual  a
                            3
                                                                      5
                               m ⋅ (1 rm    )   A               11 (1 r ⋅ 11)  3180   
                                      + ⋅
                                                                        ⋅
                                                                           +
                    a =  5      a +  5    5  n+ 1  −      mod m =  5    1+      −      mod11 =
                                 m n+ 1 ⋅  m 5  B 5                11 6 ⋅      2520   
                                                                ])
                             =  (1+  [2 1,26 mod 11−  ])  =  (1+  [0,74 mod11 =  (1 0 mod 11 1+  )  =  .
                                                                         1
                                                                                0
               We have that  a = 1. According to the obtained values  a = ,  a =  and  a = 1 of the recovered
                              5
                                                                             3
                                                                     1
                                                                                        5
            186
   181   182   183   184   185   186   187   188   189