Page 70 - konishipaper
P. 70
LiquidConvectIonUnderneaththeFuelSurfaceduetoEvaporation calculatedbythefolowequation:
235
qz=o=Jz=odHvap=ðHvap
盟
CA()~I事 (3) R T . ." V π t
Thetheoreticalresultsoftheheatofevaporation calculated by Eq.(3) are compared with the experimentaldataobtainedbyHIinFig.6(a).Atthe beginingofevaporation,thecalculatedvaluesarein goodagreementwiththeexperimentalresults.
Thetempera旬 rechangein且quidphasedueto evaporationissolvedbythefollowingl-Dheat conductionequationwiththeinitialandboundary conditions:
(4)
oT e)2T 一 一 =α 一一-
e)t e)z2 at t=O, B.C.l: at z=O,
.rc・-
B.C.2: at z=αコf
22 T=30.C
whereαisthethermaldifusivityofmethanotTois
the initial fuel temperature and λis thermal conductivityo_fmethanol.Equation(4)issolvedby usingMAR00,ageneralfiniteelementmethod program.Thecalculatedresultsoftemperaturedrop andtheresultingCIGLareshowninFig.6(b),which areconsistentwiththemeasuredvaluesbeforethe
ocurenceoftheconvectivemotion. O123
Fromtheabovediscusion,itwasconcluded血at
themechanismofconvectionanditsefectonthe
concentrationprofilesoverthesurfaceisasfolows.
Whentheshuterplatesareopened,avertical
temperaturedlstributionisformedintheliquidphase,
becausetheliquidsurfaceiscoledbyevaporation.If theverticaltemperaturediferencebetweenthesurfaceandbulkbodyreachesthecorespondingcriticalMarangoni number,surface-tension-driven-Benardconvectionocurs.Theconcentrationattheinterfacebetween'gasand liquid(CIGL)decreaseswithdecreasingsurfacetemperatureasaresultofevaporation.AsBenardcelsdevelop andchangetheirp"aternandsize,theaveragesurfacetemperature andcorespondingC1GLincreases.Ifthe verticaltemperaturediferencereachesthecorespondingcriticalRayleighnumber,buoyancy-driven-Rayleigh- BenardconvectioncommenceswhichmodifiesthesizeandpaternofBenardcels,andconsequent1ychanges surfacetemperatureandC1GL.
5.SUMMARY
Liquidconvectivemotionunderneaththefuelsurfacecausedbyevaporationwasexperimentalyinvestigated bymeasuringthesurfacetemperatureandthetemperatureprofileintheliquidphaseandtheconcentration profileinthegasphase.1Rcameracanmeasurethetemperatureprofilesoftheliquidsurfaceandthesizeand pat ternofthecel ls. TheHIwasaveryef fectivemethodtoacquirethe ac curateconcentrationprofilesingas phase and consequent1y the concentration at the interface betwe er r gas and liquid (C1GL). However it is not apropriatetodeterminethelocaltemperaturesfromtheinterferogramsbecauseofrefractionoflightduetothe meniscusnearthePyrexwal.l
Atfirstil-definedsmalscalecelsoflmmwavelengthemergedafter0.2secondfromtheonsetof evaporation.Secondthesecel1sdeveloptoformpolygonalcel1sandthenincreaseinthesize.Finalyafter2 seconds,theyreachedaquasi-steadystatekeepingtheirsizeof4mmwavelength.CIGLquicklydecreasesasa resultofsurfacetemperaturedescentuntil0.2secondsandthengradualyincreasesasthesurfacetemperature increasesduetoconvectivemotionintheliquidphase.1ntheviewofliquidtemperatureprofile,temperature profilesarebui1tbyconformingwithl-Dheatconductionequationuntiltheliquidconvectiontakesplace.After
28
27
21
18
(a)
Time[s] Fig.6.ExperimentalandtheoreticalresuItsof
theheatofevaporation(a)andsurface temperaturechangecalculatedbyFEM(b).
CI -)t InH
eB Um
--l q“rJW VAaL E nド μn・VA mE
pu T
、 E
,
nu - Z
可EEEd z
「U // TA 「O
』 F-
A凡 nU T一-,T
nu 、
一
TqT
[求 {O〉 ]40Hハ )
、.a'
'D 、.,
O Qノ ウム 1i
[υL255ω円四日£ ωO何百ロ∞