Page 266 - J. C. Turner "History and Science of Knots"
P. 266
A History of Topological Knot Theory 257
41. A. Haefliger, `Knotted (4k-1) Spheres in 6k-space', Annals of Mathe-
matics, 75 No. 3, (May 1962). 452-466.
42. W. Haken, `Uber das Homoomorphie Problem der 3-Mannigfaltigkeit
1. Math. Zeit., 80, (1962). 92-120.
43. M. G. Haseman, `On knots, with a census of amphicheirals with 12
crossings', Trans. Roy. Soc. Edinburgh, 52, (1918). 235-255.
44. G. Hemion, The Classification of Knots and 3-dimensional Spaces (Ox-
ford 1992)-
45. M. Jimbo, `Quantum R Matrix for the Generalized Toda System', Com-
munications in Mathematical Physics, 102, (1988). 537-547.
46. V. F. R. Jones, `A Polynomial Invariant for Knots via von Neumann
Algebras', Bulletin of the American Mathematical Society, 12, No. 1
(January, 1985).
47. V. F. R. Jones, `A New Knot Polynomial and von Neumann Algebras',
Notices of the American Mathematical Society 33, No. 2, (1986). 219-
225.
48. V. F. R. Jones, `Knot Theory and Statistical Mechanics', Scientific
American, (November 1990). 52-57.
49. V. F. R. Jones, `On Knot Invariants Related to some Statistical Me-
chanical Models', Pacific Journal of Mathematics, 137 No. 2, (1989).
311-334.
50. V. F. R. Jones, Subfactors and Knots (CBMS No. 8, American Math-
ematical Society, 1991).
51. D. Joyce, `A Classifying Invariant of Knots, the Knot Quandle', Journal
of Pure and Applied Algebra, 23, (1982). 37-65.
52. T. Kanenobu, `Infinitely Many Knots with the same Polynomial Invari-
ant', Proc. of the American Mathematical Society, 97 No. 1, (1986).
158-162.
53. A. Kaselowsky, The Peruvian Quipu (Essay in the History of Mathe-
matics, Arhnis University, 1993). (See chapter 5 of this book).
54. L. H. Kauffman, Knots and Physics, (WSP Singapore 1991).
55. R. Kirby, `A Calculus for Framed Links in S", Inventiones Mathemat-
icae, 45, (1978). 35-56.
56. F. Klein, Annals of Mathematics IX, 478 (1876).
57. M. Kline, Mathematical Thought from Ancient to Modern Times (Ox-
ford University Press, 1972).
58. C. G. Knott, Life and Scientific Work of Peter Guthrie Tait (Cam-
bridge University Press, 1911).
59. P. P. Kulish, N. Yu. Reshetikhin and E. K. Sklyanin, `Yang-
Baxter Equation and Representation Theory I, Letters of Mathematical
Physics, 5, (1981). 393-403.
60. W. B. R Lickorish, `A relationship between link polynomials', Math.