Page 281 - FUNDAMENTALS OF COMPUTER
P. 281

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              281


                  2.  If a carry is generated at the end, neglect it  2. `{X A§V _| hm{gb AmVm h¡, Vmo Cgo N>mo‹S> Xmo VWm
                      and put a (+) sign before the number.       (+) H$m {MÝh bJmAmo &

                  3.  If the carry is not obtained at the end, take  3. `{X hm{gb Zht AmVm h¡ Vmo EH$ ~ma {\$a go `moJ
                      2’s complement of the sum and put a (–)     H$m 2’s H$m°påßb_|Q> bmo VWm  (-) H$m {MÝh bJmAmoŸ&
                      sign before the number.
                      Consider one example :                      {ZåZ CXmhaU H$mo XoImo…
                                                        1101 –1010
                      Replace 1010 with its 2’s complement and    (-) dmbr g§»`m 1010 H$m 2’s H$m°påßb_|Q> boH$a Omo‹S>Zo
                  change (–) to (+), and add:                 na

                                                               1 10 1
                                                            +  0 1 10
                                                    Carry  () 1  0 0 1 1
                      There is a carry at the end. It shows that  My±{H$ A§V _| hm{gb Am`m h¡ AV… n[aUm_ YZmË_H$
                  the result is positive. The  actual result is ob-  h¡ Am¡a `h hm{gb H$mo N>mo‹S>Zo na àmá hmoJmŸ& AV… (+)
                  tained by neglecting carry and putting a (+)  H$m {MÝh bJmZm hmoJm…
                  sign : Thus,
                                                   1101  – 1010 =  + 0011
                      Now consider one more example:              A~ EH$ Am¡a CXmhaU bmo…
                                                         1001 – 1110
                      Take 2’s complement  of subtrahend 1110     1110 H$m  2’s H$m°påßb_|Q> boH$a (-)  H$s  OJh
                  and replace (–) with (+). Add.              (+) H$aZo na:

                                                      1001 + 0010 = 1011
                      There is no carry at the end. It shows that  My±{H$ A§V _| H$moB© hm{gb Zht Am`mŸ& AV… n[aUm_
                  the result is negative. The actual result is ob-  F$UmË_H$ h¡ Ÿ& `moJ H$m 2’s H$m°påßb_|Q> boH$a dmñV{dH$
                  tained by taking  2’s  complement  of the  sum  n[aUm_ àmá {H$`m Om gH$Vm h¡Ÿ& AV…
                  and putting a (–) sign. Thus,
                                                     1001 – 1110 = – 0101
                      Thus, we have seen both type of problems.   A~ h_Zo XmoZm| Vah H$s g_ñ`m XoI br Ÿ&  2’s
                  The whole procedure of 2’s complement sub-  H$m°påßb_|Q> {d{Y ({~Zm {MÝh dmbr g§»`mAm| hoVw) EH$
                  traction can best be illustrated using flowchart:  âbmoMmQ>© go Xem©B© Om gH$Vr h¡:
   276   277   278   279   280   281   282   283   284   285   286