Page 280 - FUNDAMENTALS OF COMPUTER
P. 280

NPP













                   280                         Fundamentals of Computers                           NPP


                  Direct Method of getting 2’s complement     2’s H$m°påßb_|Q> {ZH$mbZo H$s grYr {d{Y
                      Start  from right  side (LSB),  write all  the  Xr JB© ~mBZar g§»`m Ho$ grYo hmW H$s Va\$ go ewê$
                  zeros and first 1. Invert all the remaining bits.  H$amo& gmao eyÝ` d àW_ 1 H$mo d¡go hr CVma bmo Ÿ& BgHo$
                  The resulting binary number is the 2’s comple-  níMmV² g^r {~Q>m| H$mo CëQ>m H$a Xmo Ÿ& O¡go _mZm {H$ h_|
                  ment. Consider  the binary number  shown in
                  the above problem i.e 1110, the 2’s complement  1110 H$m 2’s H$m°påßb_|Q> {ZH$mbVm h¡ Vmo ZrMo {MÌ H$mo
                  can be directly obtained as follows:        XoImo…

                                                                1  1  1  0 ←    Start
                                                                ↓ ↓↓ ↓
                                         2's complement   →     0  0  1 0
                                                         Invert

                      Thus, 0010 is 2’s complement of 1110.       AV… 1110 H$m 2’s H$m°påßb_|Q> 0010 h¡ Ÿ&
                       Problem 3.80                                àíZ 3.80
                      Find 2’s complement of the following num-   grYr  {d{Y go  {ZåZ ~mBZar  g§»`mAm| Ho$   2’s
                  bers using direct method:
                                                              H$m°påßb_|Q> {ZH$mbmo…
                                   (1)  1010    (2)  110100    (3)  11111   (4)  10000   (5) 0001
                  Solution:                                   hc:

                      Start from right side and write all the zeros  grYo hmW go ewê$ H$aHo$ àW_ 1 VH$ d¡go hr {bImo
                  and first  one. After that take  complement of  VWm BgHo$ níMmV² gmar {~Q>m| H$mo CëQ>m H$amo…
                  each bit.
                             (1) 1010      2’S  complement       0110
                                       →
                                                              →
                             (2) 110100      2’S  complement      001100
                                                               →
                                         →
                             (3) 11111      2’S  complement      00001
                                        →
                                                              →
                             (4) 10000     2’S  complement      10000
                                                             →
                                        →
                             (5) 0001      2’S  complement       1111
                                       →
                                                              →
                  2’s Complement Subtraction Method           2’s H$m°påßb_|Q> H$s ghm`Vm go KQ>mZm ({~Zm {MÝh
                  (Unsigned Binary)                           dmbr g§»`mE±)
                      Take the 2’s complement of subtrahend and   Bg {d{Y _| {Og g§»`m H$mo KQ>mZm h¡ CgH$m 2’s
                  perform addition instead  of subtraction. The  H$m°påßb_|Q> bo boVo h¡ Am¡a KQ>mZo Ho$ ~OmE Omo‹S>Vo h¢ Ÿ&
                  algorithm for  2’s complement subtraction   Bg {d{Y H$mo Bg àH$ma g_Pm`m Om gH$Vm h¡…
                  method is shown below:
                  1.  Take 2’s  complement of subtrahend. Re-  1. {Og g§»`m H$mo KQ>mZm h¡, CgH$m 2’s H$m°påßb_|Q> bmo
                      place (–) sign with (+) and add.            VWm (-) Ho$ ñWmZ na (+) {bI Xmo Am¡a Omo‹S>moŸ&
   275   276   277   278   279   280   281   282   283   284   285