Page 327 - FUNDAMENTALS OF COMPUTER
P. 327

NPP               Number System, Boolean Algebra and Logic Circuits              327


                        A        B






                  (2)
                                                                  F






                                                  EXERCISES  2


                  1.  Simplify the following Boolean function using Karnaugh map method  K
                      (a)  F =  B . A  +  B . A  +  B . A
                                         C . B . A
                                           +
                      (b) F =    C . B . A  + NPP
                                                C . B . A
                      (c)  F =     D . C . B . A  +  D . C . B . A  +  D . C . B . A  +  D . C . B . A
                      (d) F =  (A +  B ) (A.  +  B ) (A.  +  B )
                      (e)  F =  (A +  B +  C +  D ) (A.  +  B+  C +  D ) (A.  +  B +  C +  D )
                      (f) F = Σm (2, 3, 6, 7)

                      (g) F = Σm (0, 1, 4, 5, 9, 12, 14)
                      (h) F = πM (0, 1, 3, 6)
                      (i)  F = πM (1, 2, 5, 6, 8, 11, 14, 15)
                      (j)  F =    C . B . A  +  C . B . A  +  B . A
                      (k) F =      D . C . B . A  +  D . C . B . A  +  D . C . B . A  +  AB C . +  B . A

                      (l)  Q =  Y . X  +  Y . X
                      (m) Y (A, B, C) = πM (1, 2)
                      (n) F (W, X, Y, Z) = πM (0, 4, 6, 7)

                      (o) Y =      D . C . B . A  +  D . C . B . A  +  D . C . B . A  +  D . C . B . A  +  C . B . A  D
                  2.  Simplify the following Boolean function in POS Form using K-map method  K


                      (a)  F =  B . A  +  B . A

                      (b) F =     C . B . A  +  C . B . A  +  C . B . A
                      (c)  F = (A +  B +  C ) (A.  +  B +  C ) (A.  +  B +  C ) (A.  +  B +  C )
   322   323   324   325   326   327   328   329   330   331   332