Page 327 - FUNDAMENTALS OF COMPUTER
P. 327
NPP Number System, Boolean Algebra and Logic Circuits 327
A B
(2)
F
EXERCISES 2
1. Simplify the following Boolean function using Karnaugh map method K
(a) F = B . A + B . A + B . A
C . B . A
+
(b) F = C . B . A + NPP
C . B . A
(c) F = D . C . B . A + D . C . B . A + D . C . B . A + D . C . B . A
(d) F = (A + B ) (A. + B ) (A. + B )
(e) F = (A + B + C + D ) (A. + B+ C + D ) (A. + B + C + D )
(f) F = Σm (2, 3, 6, 7)
(g) F = Σm (0, 1, 4, 5, 9, 12, 14)
(h) F = πM (0, 1, 3, 6)
(i) F = πM (1, 2, 5, 6, 8, 11, 14, 15)
(j) F = C . B . A + C . B . A + B . A
(k) F = D . C . B . A + D . C . B . A + D . C . B . A + AB C . + B . A
(l) Q = Y . X + Y . X
(m) Y (A, B, C) = πM (1, 2)
(n) F (W, X, Y, Z) = πM (0, 4, 6, 7)
(o) Y = D . C . B . A + D . C . B . A + D . C . B . A + D . C . B . A + C . B . A D
2. Simplify the following Boolean function in POS Form using K-map method K
(a) F = B . A + B . A
(b) F = C . B . A + C . B . A + C . B . A
(c) F = (A + B + C ) (A. + B + C ) (A. + B + C ) (A. + B + C )