Page 328 - FUNDAMENTALS OF COMPUTER
P. 328

NPP













                   328                         Fundamentals of Computers                           NPP


                      (d) Y =  Σ m ( 3,2  ) 5 , 4 ,
                      (e)  F =  Σ m  ( 1,0  , 9 , 7 , 3 ,  15 )
                      (f)  Y = π M  (0, 2, 6, 7 )

                      (g)  F = π M  (1, 4, 6,9,12,13,15 )
                  3.  Minimize the following Boolean expressions using K-map method  K

                      (a) F = Σm (2, 4, 6) + d (1, 7)
                      (b) Y = πM (2, 4, 7).d (0, 1, 6)
                      (c) F = m  + m  + m  + m  + m .X + m .X
                               0   1    5   7   2     3
                      (d) F = Σm (0, 1, 3, 7, 9) + d (2, 6, 12, 13, 15)
                      (e) F = πM (1, 2, 4, 7, 8, 10) . d(0, 3, 9, 13, 15)

                      (f) F = M  . M  . M  . M 7
                               0
                                   1
                                       4
                      (g) F = Σm (0, 1, 3, 7, 8) + d (2, 4, 5, 6, 9, 12)
                      (h) F = πM (1, 3, 6, 7, 12, 13) . d (0, 2, 11, 15)
                  4.  Simplify the following Boolean Functions in SOP and POS Forms. Implement using Uni-
                      versal Gate (SOP    POS
                      (a)  A =    Z . Y . X  +  Z . Y . X  +  Z . Y . X

                      (b) F =  (A+ B+ C ) (A.  + B+ C ) (A.  + B+ C ) (A.  + B+ C )
                      (c)  Q =  Σ m  ( 4,2  ) 7 , 6 ,
                      (d) F = π M  (0,1, 4, 6, 8, 12, 15 )
                      (e)  F = π M  (0,3, 7 )
                      (f)  F =  Σ m  ( 2,0  ) 7 , 5 ,  +  d ( ) 1
                                                )
                      (g)  F = π M  (0,3, 4,5, 7,9,10,11 * d  (8,13,15 )
                      (h) Q =      D . C . B . A  +  D . C . B . A  +  C . B . A  +  B . A
                      (i)  F =   C . B . A  +  C . B . A  +  C . B . A  +  D . C . B . A

                  5.  Simplify the following Boolean function using variable mapping method (


                      (a)  F =    C . B . A  +  C . B . A  +  . B . A  CD
                      (b) F =     C . B . A  +  C . B . A  +  D . C . B . A  +  C . B . A  D

                      (c)  Q =      D . C . B . A  +  C . B . A  D +  D . C . B . A  +  D . C . B . A

                      (d) F =    C . B . A  +  C . B . A  +  C . B . A  +  C . B . A  +  C . B . A
   323   324   325   326   327   328   329   330   331   332   333