Page 7 - CHAPTER 4 (Quadratic equations)
P. 7

CHAPTER 4
          QUADRATIC EQUATIONS





                    Checkpoint - 2




          1.  64x – 529 = 0
                   2
               2
          2.  x – x – 12 = 0
          3.  x -2√3 x + 3=0
               2
          4.  bcx + (b -ac)x - ab=0
                         2
                   2
                  x          x
                     2
          5.  5(    )  - 4(    )-1=0; x≠ -1
                 x+1        x+1



          B. Completing the Square Method:

          Step-  I:  First  obtain  the  quadratic  equation  and  Let  the  quadratic

                              2
          equation be ax +bx+c=0, a ≠0.

          Step- II: Make the coefficient of   ² unity by dividing throughout by it if

                                                     b
                                                           c
          it is not unity that is obtain x²+  x+  =0
                                                     a     a
                                                                                       b
                                                                                               c
          Step-III: Shift the constant term c/a on R.H.S. to get x²+  x= -
                                                                                        a      a
                                                                                           b
          Step-IV: Add the square of half of the coefficient of x. i.e., ( ) ² on both
                                                                                          2a

          sides to obtain.

                   b           b          b       c
          x²+2  (    )  x+  (    ) ²=  (    ) ²-
                  2a          2a         2a       a

          Step-V:  Write  LHS  as  the  perfect  square  and  simplify  RHS  to  get


               2
          (x+ ) ²=     b²-4ac
              2a        4a²

          Step-VI:  Take square root of both sides to get x+                   b  = ±√ b²-4ac
                                                                              2a         4a²

                                                                                                     b
          Step-VII:     Obtain the values of x by shifting the constant term   on
                                                                                                    2a


          R.H.S., i.e., =-   b   ±√ b²-4ac
                           2a       4a²




                                                                                                                  7
   2   3   4   5   6   7   8   9   10   11   12