Page 8 - CHAPTER 4 (Quadratic equations)
P. 8

CHAPTER 4

                                                                    QUADRATIC EQUATIONS



                         Try and learn


                                  2
              Example 6: 9x -15x+6=0

                                       2
              Solution: Here, 9x -15x+6=0
                             6
                      15
              ⇒  x²- x+  =0                      [Dividing throughout by 9]
                      9      9
                     5      2
              ⇒x²-  x+  =0
                     3      3

                            2
                     5
              ⇒x²-  x=-                           [Shifting the constant term on RHS]
                     3      3
                       5
                                              2
                                        5
                               5
              ⇒x²-2 ( ) x+ ( ) ²=  ( ) ²-      [Adding square of half of coefficient of x on
                       6       6        6     3
              both sides]
                     5       25 2           5       25-24            5        1
              ⇒ (x- ) ²=        -  ⇒ (x- ) ²=                 ⇒  (x- ) ²=
                     6       36 3           6         36             6       36
                     5
                            1
              ⇒  x- = ±                            [Taking square root of both sides]
                     6      6
                     5     1         5    1            5    1   4    2
              ⇒  x=  ±   ⇒ x= +  =1 or, x= -  =  =
                     6     6         6    6            6 6      6    3

                              2
              ⇒  x=1 or, x=
                              3

              Example 7:  Solve the equation  x²-(√3+ 1)x+ √3=0 by the method of

              completing the square.



              Solution:  We have,


              x²-(√3+ 1)x+ √3=0


              ⇒x²-(√3+ 1)x= - √3


                        √3+1          √3+1                 √3+1
              ⇒x²-2  (        ) x+  (       ) ²= -√3+  (         ) ²
                           2             2                   2


                      √3+1        -4√3+ (√3+ 1)²
              ⇒  (x-        ) ²=
                        2                  4






     8
   3   4   5   6   7   8   9   10   11   12   13