Page 133 - 'Blast_Into_Math
P. 133

Blast into Math!                         Mathematical perspectives: all aour mase are melong to us



                                       k
                                                         k
                          n +1 = x ∗ b +(n +1 − x ∗ b )can be uniquelywritteninbase b.

                                                            ♥

               In base 2, the number 2 is


                                                            1
                                                                    0
                                                   2= 1 ∗ 2 +0 ∗ 2 .
               So, if we write 2 in base 2, it is 10. What happens if we write 3 in base 3? Well,


                                                                    0
                                                            1
                                                   3= 1 ∗ 3 +0 ∗ 3 .
               So, 3 in base 3 is 10. This is no coincidence. This is a fact which we’ll call the basic proposition.



               Proposition 6.1.5 (Basic Prop). Let b  be a base. Then, the digits of b  in base b  are 10.


               Proof: The number b  is always equal to


                                                                    0
                                                            1
                                                   b =1 ∗ b +0 ∗ b .















































                                                           133
   128   129   130   131   132   133   134   135   136   137   138