Page 166 - 'Blast_Into_Math
P. 166

Blast into Math!                                 Analatic nummer theora: ants, ghosts and giants



               Lemma 7.2.4 (Friendly  Q  Lemma). For any two real numbers x  and  y  such that


                                                         x< y,

               there exists a rational number z ∈ Q  such that


                                                       x< z< y.

               Proof: If x  and  y  are both rational numbers, then since x< y ,

                                                          x + y
                                                     x<         <y,
                                                            2
               and

                                                       x + y
                                                             ∈ Q.
                                                         2


               In this case the role of z  in the lemma is played by  x+y . If  y/∈ Q , then  y  is the least upper bound of
                                                              2
               a non-empty set S ⊂ Q . Since x< y , x  is not an upper bound for S , because  y  is the least upper
               bound of S . So, there is some s ∈ S ⊂ Q  with


                                                       x<s< y.
















































                                                           166
   161   162   163   164   165   166   167   168   169   170   171