Page 21 - Cambridge+Checkpoint+Mathematics+Coursebook+9
P. 21

2.3 Finding the inverse of a function



               2.3 Finding the inverse of a function


               You can represent a function in three di&erent ways.
                As a function machine       As an equation      ‘ As a mapping

                 x      × 2      + 3     y    y = 2x + 3            x → 2x + 3

               To work out the output values, substitute the input values into
               the function.                                                    Input                    Output
               In this function, the missing output values are:                   5                         ...
                                                                                  8      × 2       + 3      ...
               5 × 2 + 3 = 13 and 8 × 2 + 3 = 19                                 ...                       27
               To work out the missing input value you take the output value and reverse the function.
                                                               −
               So, in this function, the missing input value is:   27 3  = 12
                                                              2
               When you reverse the function you are "nding the inverse function.

               You can write an inverse function as a function machine, an equation or a mapping like this.

                      Function:         x     × 2       + 3     2x + 3
                                        x
                                              × 2
                                                        + 3
                                                                2x + 3
                      Inverse:       x – 3    ÷ 2       – 3     x
                                     x – 3
                                      2       ÷ 2       – 3     x
                                      2
                      So the inverse function is y =  x − 3  or x →  x − 3 .
                                                     2            2


               Worked example 2.3
                Work out the inverse function for:   a  y = x + 5   b  x →  x  −4 .
                                                                          2

                a
                      x    + 5     x + 5                   Draw the function machine.

                   x – 5    – 5    x                       Reverse the function machine.

                   y = x − 5                               Write the inverse function as an equation.

                b                                x
                         x      ÷ 2      – 4       – 4     Draw the function machine.
                                                 2
                   2(x + 4)    × 2      + 4      x         Reverse the function machine.

                   x → 2(x + 4)                            Write the inverse function as a mapping.


               )     Exercise 2.3


               1  Work out the inverse function for each equation.
                  a  y = x + 9     b  y = x − 1     c  y = 3x        d  y =  x
                                                                            6

       20      2 Sequences and functions
   16   17   18   19   20   21   22   23   24   25   26