Page 20 - CBAC Newsletter 2016
P. 20
Reference List (Continued)
19. Huang H, Trussell LO. KCNQ5 channels control resting properties and release probability of a synapse.
Nat Neurosci. 14: 840-847, 2011.
20. Zhou X, Song M, Chen D, Wei L, Yu SP. Potential role of KCNQ/M-channels in regulating neuronal
differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Exp. Neurol.
229: 471-483, 2011.
21. Knollmann BC, Sirenko S, Rong Q, Katchman AN, Casimiro M, Pfeifer K, Ebert SN. Kcnq1 contributes to
an adrenergic-sensitive steady-state K+ current in mouse heart. Biochem Biophys Res Commun.
360: 212-218, 2007.
22. Leitner MG, Feuer A, Ebers O, Schreiber DN, Halaszovich CR, Oliver D. Restoration of ion channel function
in deafness-causing KCNQ4 mutants by synthetic channel openers. Br J Pharmacol. 165: 2244-2259,
2012.
23. Abd-Elsayed AA, Ikeda R, Jia Z, Ling J, Zuo X, Li M, Gu JG. KCNQ channels in nociceptive cold-sensing
trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia.
Mol Pain. 11: 45, 2015.
24. Wang JJ, Li Y. KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol Sin.
37: 25-33, 2016.
25. Cavaliere S, Malik BR, Hodge JJ. KCNQ channels regulate age-related memory impairment. PloS One.
8, e62445, 2013.
26. Fontan-Lozano A, Suarez-Pereira I, Delgado-Garcia JM, Carrion AM. The M-current inhibitor XE991 decreases
the stimulation threshold for long-term synaptic plasticity in healthy mice and in models of cognitive
disease. Hippocampus. 21: 22-32, 2011.
27. Petrovic MM, Nowacki J, Olivo V, Tsaneva-Atanasova K, Randall AD, Mellor JR. Inhibition of post-synaptic
Kv7/KCNQ/M channels facilitates long-term potentiation in the hippocampus. PloS One. 7, e30402, 2012.
28. Levitan IB. Signaling protein complexes associated with neuronal ion channels. Nat. Neurosci.
9, 305-310, 2006.
29. Li Y, Gao J, Lu Z, McFarland K, Shi J, Bock K, Cohen IS, Cui J. Intracellular ATP binding is required to activate
the slowly activating K+ channel I(Ks). Proc. Natl. Acad. Sci. USA. 110: 18922-18927, 2013.
30. Zheng R, Thompson K, Obeng-Gyimah E, Alessi D, Chen J, Cheng H, McDonald TV. Analysis of the interactions
between the C-terminal cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Bioch. J. 428:
75-84, 2010.
31. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE., Steinmeyer K. Molecular cloning and
functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current
diversity. J Biol Chem. 275: 22395-22400, 2000.
32. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ. A constitutively open potassium
channel formed by KCNQ1 and KCNE3. Nature. 403: 196-199, 2000.
33. Schwake M, Pusch M, Kharkovets T, Jentsch TJ. Surface expression and single channel properties of
KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem. 275: 13343-13348, 2000.
34. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins
associate to form the I(Ks) cardiac potassium current. Nature. 384, 78-80, 1996.
35. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. Coassembly of K(V)LQT1 and
minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 384,, 80-83, 1996.
36. Li P, Liu H, Lai C, Sun P, Zeng W, Wu F, Zhang L, Wang S, Tian C, Ding J. Differential modulations of KCNQ1 by
auxiliary proteins KCNE1 and KCNE2. Scientific reports 4, 4973, 2014.
37. Osteen JD, Gonzalez C, Sampson KJ, Iyer V, Rebolledo S, Larsson HP, Kass RS. KCNE1 alters the voltage
sensor movements necessary to open the KCNQ1 channel gate. Proc Natl Acad Sci USA. 107,
22710-22715, 2010.
16 | CBAC Center Heartbeat