Page 190 - Adams and Stashak's Lameness in Horses, 7th Edition
P. 190

156   Chapter 2


            32.  Keegan KG, Yonezawa Y, Pai PF, et  al. Evaluation of a sensor   54.  Pfau T, Robilliard JJ, Weller R, et al. Assessment of mild hindlimb
               based system  of equine  motion analysis  for the  detection  and   lameness during over ground locomotion using linear discriminant
                                                                  analysis of inertial sensor data. Equine Vet J 2007;39:407–413.
               quantification of forelimb and hindlimb lameness in horses. Am J
  VetBooks.ir  33.  Keegan KG, Dent EV, Wilson DA, et al. Repeatability of subjective   55.  Pfau T, Starke SD, Troester S, et al. Estimation of vertical tuber
               Vet Res 2004;65:665–670.
                                                                  coxae movement in the horse from a single inertial measurement
                                                                  unit. Vet J 2013;198:498–503.
               evaluation of lameness in horses. Equine Vet J 2010;42:92–97.
            34.  Keegan KG, Kramer J, Yonezawa Y, et al. Assessment of repeata­
               bility of a wireless, inertial sensor‐based lameness evaluation sys­  56.  Pfau  T, Spicer‐Jenkins C, Smith RK, et  al. Identifying optimal
                                                                  parameters for quantification of changes in pelvic movement
               tem for horses. Am J Vet Res 2011;72:1156–1163.    asymmetry as a response to diagnostic analgesia in the hindlimbs
            35.  Keegan KG, MacAllister CG, Wilson DA, et al. Comparison of an   of horses. Equine Vet J 2014;46:759–763.
               inertial sensor system with a stationary force plate for evaluation   57.  Pfau T, Parkes RS, Burden  ER, et  al. Movement  asymmetry in
               of horses with bilateral forelimb lameness.  Am J  Vet Res   working polo horses. Equine Vet J 2015;48:517–522.
               2012;73:368–374.                                58.  Pfau T, Boultbee H, Davis H, et al. Agreement between 2 inertial
            36.  Keegan KG, Wilson DA, Kramer J, et al. Comparison of a body‐  sensor systems for lameness examinations in horses. Equine Vet
               mounted inertial sensor system‐based method with subjective   Educ 2016:28:203–208.
               evaluation for detection of lameness in horses.  Am J  Vet Res   59.  Pfau T, Jennings C, Mitchell H, et al. Lungeing on hard and soft
               2013;74:17–24.                                     surfaces: movement symmetry of trotting horses considered sound
            37.  Keg PR, Schamhardt HC, van Weeran PR, et al. The effect of diag­  by their owners. Equine Vet J 2016;48:83–89.
               nostic regional nerve blocks in the forelimb on the locomotion of   60.  Pfau, T., Sepulveda Caviedes, M. F., McCarthy, R., et al. (2018),
               clinically sound horses. Vet Q Suppl 1996;18:106–109.  Comparison of visual lameness scores to gait asymmetry in racing
            38.  Kelmer G, Keegan KG, Kramer J, et al. Computer‐assisted kine­  Thoroughbreds during trot in‐hand. Equine Vet Educ. doi:10.1111/
               matic evaluation of induced compensatory movements resembling   eve.12914.
               lameness in horses trotting on a treadmill. Am J Vet Res 2005;   61.  Rettig JJ, Leelamankong P, Rungsri P, et al. Effect of sedation on
               66:646–655.                                        fore‐ and hind limb lameness  evaluation using body‐mounted
            39.  Licka T, Kapaun M, Peham C. Influence of rider on lameness in   inertial sensors. Equine Vet J 2016;48:602–607.
               trotting horses. Equine Vet J 2004;36:734–736.  62.  Robartes H, Fairhurst H, Pfau T. Head and pelvic movement sym­
            40.  Maliye S, Marshall JF. Naturally occurring forelimb lameness in   metry in horses during circular motion and in rising trot. Vet J
               the horse results in significant compensatory load redistribution   2013;198:52–53.
               during trotting. Vet J 2015;204:208–213.        63.  Roepstorff L, Egenvall A, Rhodin M, et al. Kinetics and kinemat­
            41.  Maliye S, Marshall JF. Objective assessment of the compensatory   ics of the horse comparing left and right rising trot. Equine Vet J
               effect on clinical hind limb lameness in horses: 37 cases. J Am Vet   2010;41:292–296.
               Med Assoc 2016;249:940–944.                     64.  Rungsri PK, Staecker  W, Leelamankong P, et  al.  Agreement
            42.  Maliye S, Voute L, Lund D, et al. An inertial sensor‐based system   between a body‐mounted inertial sensors system and subjective
               can objectively assess diagnostic anaesthesia of the equine foot.   observational analysis when evaluating lameness degree and diag­
               Equine Vet J Suppl 2013:45;26–30.                  nostic analgesia response in horses with forelimb lameness.
            43.  Marshall JF, Lund DG, Voute LC. Use of a wireless, inertial sen­  Pferdeheilkunde 2014;30:644–6550.
               sor‐based system to objectively evaluate flexion tests in the horse.   65.  Rungsri PK, Staecker  W, Leelamankong P, et  al. Use of body‐
               Equine Vet J 2012;43:8–11.                         mounted inertial sensors to objectively evaluate the response to
            44.  May SA, Wyn‐Jones G. Identification of hindleg lameness. Equine   perineural analgesia of the distal limb and intra‐articular analge­
               Vet J 1987;19:185–188.                             sia of the distal interphalangeal joint in horses with forelimb
            45.  McCracken MJ, Kramer J, Keegan KG, et al. Comparison of an   lameness. J Equine Vet Sci 2014;34:972 – 977.
               inertial sensor system of lameness quantification with subjective   66.  Schumacher J,  Taintor J, Schumacher J, et  al. Function of the
               lameness evaluation. Equine Vet J 2012;44:652–656.  ramus  communicans  of  the  medial  and  lateral palmar  nerves.
            46.  Merkens HW, Schamhardt HC. Evaluation of equine locomotion   Equine Vet J 2013;45:31–35.
               during different degrees  of experimentally induced lameness  I:   67.  Starke SD, Willems E, Head M, et al. Proximal hind limb flexion
               lameness model and quantification of ground reaction force pat­  in the horse: effect on movement symmetry and implications for
               terns of the limbs. Equine Vet J Suppl 1988;6: 99–106  defining soundness. Equine Vet J 2012;44:657–663.
            47.  Merkens HW, Schamhardt HC. Evaluation of equine locomotion   68.  Symonds KD, MacAllister CG, Erkert RS, et al. Use of force plate
               during different degrees of experimentally induced lameness II:   analysis to assess the analgesic effects of etodolac in horses with
               distribution of ground reaction force patterns of the concurrently   navicular syndrome. Am J Vet Res 2006;67:557–561.
               loaded limbs. Equine Vet J Suppl 1988;6:107–112  69.  Toth F, Schumacher J, Schramme MC, et al. Effects of anesthetizing
            48.  Moorman VJ, Frisbie DD, Kawcak CE, et  al. Effects of sensor   individual compartments of the stifle joint in horses with experi­
               position on kinematic data obtained with an inertial sensor sys­  mentally induced stifle lameness. Am J Vet Res 2014;75:19–25.
               tem during gait analysis of trotting horses. J Am Vet Med Assoc   70.  Uhlir C, Licka T, Kübber P, et al. Compensatory movements of
               2017;250:548–553.                                  horses with a stance phase lameness. Equine Vet J Suppl 1997;23:
            49.  Oosterlinck M, Pille F, Huppes T, et al. Comparison of pressure   102–105.
               plate and force plate gait kinetics in sound Warmbloods at walk   71.  van der Water E, Oosterlink M, Pille F. The effect of perineural
               and trot. Vet J 2009;186:347–351.                  anesthesia and handler position in limb loading and hoof balance
            50.  Oosterlinck M, Pille F, Back W, et al. Use of a stand‐alone pressure   on the vertical ground reaction force in sound horses, Equine Vet
               plate for the objective determination of forelimb symmetry in   J 2016;48:608–612.
               sound ponies at walk and trot. Vet J 2010;183:305–309.  72.  Weishaupt MA. Compensatory load redistribution in forelimb and
            51.  Parkes R, Weller R, Groth AM, et al. Evidence of the development   hindlimb lameness. Proc Am Assoc Equine Pract 2005;51:141–148.
               of ‘domain‐restricted’ expertise in the recognition of asymmetric   73.  Weishaupt MA, Wiestner T, Hogg HP, et al. Compensatory load
               motion characteristics of hindlimb lameness in the horse. Equine   redistribution of horses with induced weight bearing hind limb
               Vet J 2009;41:112–117.                             lameness trotting on a treadmill. Equine Vet J 2004;36:727–733.
            52.  Peham C, Licka T, Girtler D, et al. Hindlimb lameness: clinical   74.  Weishaupt MA, Wiestner T, Hogg HP, et al. Compensatory load
               judgement versus computerised symmetry measurement. Vet Rec   redistribution of horses with induced forelimb lameness trotting
               2001;148:750–752.                                  on a treadmill. Vet J 2006;171:135–146.
            53.  Perino VV, Kawcak CE, Firsbie DD, et al. The accuracy and preci­  75.  Williams GE, Silverman BW, Wilson AM, et al. Disease‐specific
               sion of an equine in‐shoe pressure measurement system as a tool   changes in equine ground reaction force data documented by use
               for gait analysis. J Equine Vet Sci 2007;27:161–166.  of principal component analysis. Am J Vet Res 1999;60:549–555.
   185   186   187   188   189   190   191   192   193   194   195