Page 347 - Avian Virology: Current Research and Future Trends
P. 347

338  |  Coppo et al.

          Perspective                                           Blacker, H.P., Kirkpatrick, N.C., Rubite, A., O’Rourke, D., and
                                                                   Noormohammadi, A.H. (2011). Epidemiology of recent outbreaks
          Infectious laryngotracheitis virus remains less studied than many   of infectious laryngotracheitis in poultry in Australia. Aust. Vet. J. 89,
          other viral agents of poultry, despite its economic impact on   89–94. https://doi.org/10.1111/j.1751-0813.2010.00665.x
          poultry industries. Key gaps in our knowledge of ILTV include   Brandly, C.A., and Bushnell, L.D. (1934). A report of some investigations of
                                                                   infectious laryngotracheitis. Poult. Sci. 13, 212–217.
          a limited understanding of ILTV latency, an incomplete charac-  Calnek, B.W., Fahey, K.J., and Bagust, T.J. (1986). In vitro infection studies
          terization of host immune responses to infection, and an inability   with infectious laryngotracheitis virus. Avian Dis. 30, 327–336.
          to effectively measure the level of protection induced in chickens   Campadelli-Fiume, G., Amasio, M., Avitabile, E., Cerretani, A., Forghieri,
          following vaccination. These knowledge gaps have limited our   C., Gianni, T., and Menotti, L. (2007). The multipartite system that
          ability to  fully  control or  prevent outbreaks  of disease. Future   mediates entry of herpes simplex virus into the cell. Rev. Med. Virol. 17,
                                                                   313–326. https://doi.org/10.1002/rmv.546
          research focused on these aspects of ILTV infection, alongside   Chacón, J.L., and Ferreira, A.J. (2009). Differentiation of field isolates and
          continued research efforts focused on the development of more   vaccine strains of infectious laryngotracheitis virus by DNA sequencing.
          efficacious vaccines, are indicated in order to better control dis-  Vaccine 27, 6731–6738. https://doi.org/10.1016/j.vaccine.2009.08.083
          ease caused by this virus.                            Chacón, J.L., Mizuma, M.Y., and Piantino Ferreira, A.J. (2010).
                                                                   Characterization by restriction fragment length polymorphism
                                                                   and sequence analysis of field and vaccine strains of infectious
          References                                               laryngotracheitis virus involved in severe outbreaks. Avian Pathol. 39,
          Abbas, F., Andreasen, J.R., Baker, R.J., Mattson, D.E., and Guy, J.S.   425–433. https://doi.org/10.1080/03079457.2010.516386
            (1996). Characterization of monoclonal antibodies against infections   Chandra,  Y.G., Lee,  J.,  and Kong,  B.W. (2012).  Genome  sequence
            laryngotracheitis virus. Avian Dis. 40, 49–55.         comparison of two United States live attenuated vaccines of infectious
          Abdul-Cader, M.S., Amarasinghe, A., Palomino-Tapia, V., Ahmed-Hassan,   laryngotracheitis virus (ILTV). Virus Genes 44, 470–474. https://doi.
            H., Bakhtawar, K., Nagy, E., Sharif, S., Gomis, S., and Abdul-Careem,   org/10.1007/s11262-012-0728-7
            M.F. (2018). In ovo CpG DNA delivery increases innate and adaptive   Chang, C.D., Lin, P.Y., Liao, M.H., Chang, C.I., Hsu, J.L., Yu, F.L., Wu, H.Y.,
            immune cells in respiratory, gastrointestinal and immune systems   and Shih, W.L. (2013). Suppression of apoptosis by pseudorabies virus
            post-hatch correlating with lower infectious laryngotracheitis virus   Us3 protein kinase through the activation of PI3-K/Akt and NF-κB
            infection. PLOS ONE 13, e0193964. https://doi.org/10.1371/journal.  pathways. Res. Vet. Sci.  95, 764–774. https://doi.org/10.1016/j.
            pone.0193964                                           rvsc.2013.06.003
          Agnew-Crumpton, R., Vaz, P.K., Devlin, J.M., O’Rourke, D., Blacker-Smith,   Chang, P.W., Sculco, F., and Yates, V.J. (1977). An in vivo and in vitro study
            H.P.,  Konsak-Ilievski, B.,  Hartley,  C.A.,  and Noormohammadi,  A.H.   of infectious laryngotracheitis virus in chicken leukocytes. Avian Dis. 21,
            (2016). Spread of the newly emerging infectious laryngotracheitis viruses   492–500.
            in Australia. Infect. Genet. Evol. 43, 67–73. https://doi.org/10.1016/j.  Chen, H.Y., Cui, P., Cui, B.A., Li, H.P., Jiao, X.Q., Zheng, L.L., Cheng, G.,
            meegid.2016.05.023                                     and Chao, A.J. (2011a). Immune responses of chickens inoculated
          Ahmed-Hassan, H., Abdul-Cader, M.S., Sabry, M.A., Hamza, E., and   with a recombinant fowlpox vaccine coexpressing glycoprotein
            Abdul-Careem, M.F. (2018). Toll-like receptor (TLR)4 signalling   B of infectious  laryngotracheitis virus and chicken IL-18. FEMS
            induces myeloid differentiation primary response gene (MYD) 88   Immunol. Med. Microbiol.  63, 289–295. https://doi.org/10.1111/
            independent pathway in avian species leading to type I interferon   j.1574-695X.2011.00850.x
            production and antiviral response. Virus Res. 256, 107–116.  Chen, H.Y., Zhang, H.Y., Li, X.S., Cui, B.A., Wang, S.J., Geng, J.W., and Li, K.
          Alcami, A. (2007). New insights into the subversion of the chemokine   (2011b). Interleukin-18-mediated enhancement of the protective effect
            system  by  poxviruses.  Eur.  J.  Immunol.  37,  880–883.  https://doi.  of an infectious laryngotracheitis virus glycoprotein B plasmid DNA
            org/10.1002/eji.200737215                              vaccine in chickens. J. Med. Microbiol. 60, 110–116.
          Alexander, H.S., and Nagy, E. (1997). Polymerase chain reaction to   Choi, E.J., La, T.M., Choi, I.S., Song, C.S., Park, S.Y., Lee, J.B., and Lee, S.W.
            detect infectious laryngotracheitis virus in conjunctival swabs from   (2016). Genotyping of infectious laryngotracheitis virus using allelic
            experimentally infected chickens. Avian Dis. 41, 646–653.  variations from multiple genomic regions. Avian Pathol. 45, 443–449.
          Andreasen, J.R., Glisson, J.R., and Villegas, P. (1990). Differentiation of   https://doi.org/10.1080/03079457.2016.1155692
            vaccine strains and Georgia field isolates of infectious laryngotracheitis   Coppo, M.J., Noormohammadi, A.H., Hartley, C.A., Gilkerson, J.R.,
            virus by their restriction endonuclease fragment patterns. Avian Dis. 34,   Browning, G.F., and Devlin, J.M. (2011). Comparative in vivo safety
            646–656.                                               and  efficacy  of a  glycoprotein G-deficient  candidate vaccine  strain  of
          Aubert, M., Chen, Z., Lang, R., Dang, C.H., Fowler, C., Sloan, D.D.,   infectious laryngotracheitis virus delivered via eye drop. Avian Pathol.
            and Jerome, K.R. (2008). The antiapoptotic herpes simplex virus   40, 411–417. https://doi.org/10.1080/03079457.2011.588686
            glycoprotein J localizes to multiple cellular organelles and induces   Coppo, M.J., Devlin, J.M., and Noormohammadi, A.H. (2012). Comparison
            reactive oxygen species formation. J. Virol. 82, 617–629.  of the replication and transmissibility of two infectious laryngotracheitis
          Awasthi, S., Lubinski, J.M., and Friedman, H.M. (2009). Immunization   virus chicken embryo origin vaccines delivered via drinking water. Avian
            with HSV-1 glycoprotein C prevents immune evasion from complement   Pathol. 41, 195–202. https://doi.org/10.1080/03079457.2012.660132
            and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine.   Coppo, M.J., Noormohammadi, A.H., Browning, G.F., and Devlin,
            Vaccine 27, 6845–6853. https://doi.org/10.1016/j.vaccine.2009.09.017  J.M. (2013). Challenges and recent advancements in infectious
          Bagust, T.J. (1986). Laryngotracheitis (Gallid-1) herpesvirus infection in   laryngotracheitis virus vaccines. Avian Pathol. 42, 195–205. https://doi.
            the chicken. 4. Latency establishment by wild and vaccine strains of ILT   org/10.1080/03079457.2013.800634
            virus. Avian Pathol. 15, 581–595.                   Coppo, M.J.C., Devlin, J.M., Legione, A.R., Vaz, P.K., Lee, S.W., Quinteros,
          Bagust, T.J., Calnek, B.W., and Fahey, K.J. (1986). Gallid-1 herpesvirus   J.A., Gilkerson, J.R., Ficorilli, N., Reading, P.C., Noormohammadi, A.H.,
            infection  in  the  chicken.  3.  Reinvestigation  of  the  pathogenesis  of   et al. (2018). Infectious laryngotracheitis virus viral chemokine-binding
            infectious laryngotracheitis in acute and early post-acute respiratory   protein glycoprotein G alters transcription of key inflammatory
            disease. Avian Dis. 30, 179–190.                       mediators In Vitro and In Vivo. J. Virol. 92, e01534–17.
          Bagust, T.J., Jones, R.C., and Guy, J.S. (2000). Avian infectious   Cover, M.S. (1996). The early history of infectious laryngotracheitis. Avian
            laryngotracheitis. Rev. Sci. Tech. 19, 483–492.        Dis. 40, 494–500.
          Beltrán, G., Williams, S.M., Zavala, G., Guy, J.S., and García, M. (2017). The   Creelan, J.L., Calvert, V.M., Graham, D.A., and McCullough, S.J. (2006).
            route of inoculation dictates the replication patterns of the infectious   Rapid  detection  and  characterization  from  field  cases  of  infectious
            laryngotracheitis virus (ILTV) pathogenic strain and chicken embryo   laryngotracheitis  virus  by real-time polymerase  chain  reaction  and
            origin (CEO) vaccine. Avian Pathol. 46, 585–593. https://doi.org/10.1  restriction fragment length polymorphism. Avian Pathol. 35, 173–179.
            080/03079457.2017.1331029
   342   343   344   345   346   347   348   349   350   351   352