Page 62 - Math SL HB Sem 3
P. 62

ln paper 1 (Use the inverse  normal  distribution  table):
                       +     Standardise first.


                                    e.g. P(X < a) :  P(Z < b)









                                                            X                                  Z
                                                 a                                  b
                                                       -.
                                                       -,/
                       ..=.p-  Check if it is the 'ideal'  case, P(Z < b) wherc b > 0
                              (i.e. b lies in the right-hand  side of the axis)
                             lf not, write the cumulative  probabilities in terms of the ideal case:

                                           Forb ) 0           P(Z>b):7-P(Z<b)
                                                                         1  P(Z <
                                           Forb < 0          P(Z < b\  =  -         -h\
                                                              P(z>b)-P(z<-b)

                       S-    Make the  'ideal'  case the subject of the equation. Then  use the table in the information

                             booklet.


                       ++:€.  Find the conesponding values  h' by
                                                           -    x-tt
                                                                 t
                                                        )  b _9:-L
                                                                 o
                                                        ,a-bo+lt


                    ln Paper 2:


                      Calculator-T  -  'DIST')call  out'invNorm (probability  less than, p, o)';
                      Calculator-C  -  call out 'lnverse  Normal', enter area (i.e. probability  less than)  ,  p, o;
                                     No need to standardise first (tansform X to Z)!
                      e.g.
                      P(x<a)=o.ro
                      I  To find  'o',  set the 'probability less than'/'area'as  0.10
                      P(X > a)  =  0.lg
                      )  To find 'a', set the 'probability less than'/'area'as  0.90
                      P(a < X < b)  =  0.50,  when  symmetrical  about the mean
                      )  To find 'a',  set the 'probability less than'/'area'as  0.25
                      t  To find 'b', set the 'probability less than'/ 'area'  as 0.75













                                                             23
   57   58   59   60   61   62   63   64   65   66   67