Page 69 - Math SL HB Sem 2
P. 69

Kolej MARA Seremban                                         Mathematics  IB High Level
                                                                                         Core : Veclors


                  Vector Arithmetic


                  Vectors in space apply the sarne rules of addition  ,  subtraction,  scalar multiplication  and
                  also the magnitude   just  as they are in the plane.

                 For any vectors v1:a1i+D1j+c1k  arld      y2=a2i+    bzi + c zk ,  and for any scalar t,


                                 2  -2     2
                  A)l Vt       at +q  +cl


                                               |
                  B)  vr + v2: (a1+ a2)i+ (b  + b 2)i  + (c  1+ c2)k
                      vl  -v2:(a1 -   a2)i+ (b  r -  )i+(c1 -   c2)k
                                                   b

                                       +
                  C) ktt  1 = ka  1i  + kb  1i  kc  1k
                  Example
                  fina lZa-Ul where a:i+j+k  and b=-i+3j-2k.

                        :
                  2a  b  2(i + j + k)  (-i + 3j  2k)
                     -
                                     -
                                               -


                  lza-ul: lri-1++t l





                            J%

                  Example


                  Find a unit vector u in the direction of the vector from A(l  ,  0  ,  1) to B(3 ,2 ,0).  Hence,
                  find a vector 6 z nits long in thal direction.


                   -+           -)
                  AB  =- o"     OA                    AB        22 +22 +(-l)2





                        -+
                       AB   _  2i+2j-k     : ?i*?i  1k
                  u
                       frt          3          J.'J


                                            -+
                                           AB    :6    2    )    1    :4i+4i-2k
                  The vector we want is 6             l  I + t  J  k
                                           Hi                   3
   64   65   66   67   68   69   70   71   72   73   74