Page 150 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 150

Char Count= 0
          August 31, 2006
                         2:57
 JWBK119-10
                Illustration of the Two Methodologies Using a Case Study Data set  135
                               Summary for Transformed Data
                                                         Anderson-Darling Normality Test
                                                           A-Squared  0.29
                                                           P-Value  0.597
                                                           Mean   0.000528
                                                           StDev  0.000146
                                                           Variance  0.000000
                                                           Skewness  −0.198567
                                                           Kurtosis  −0.205168
                                                           N         30
                                                           Minimum  0.000231
                                                           1st Quartile  0.000451
                                                           Median  0.000538
                                                           3rd Quartile  0.000641
                                                           Maximum  0.000835
                   0.0002  0.0003  0.0004  0.0005  0.0006  0.0007  0.0008
                                                          95% Confidence Interval for Mean
                                                           0.000474  0.000583
                                                         95% Confidence Interval for Median
                                                           0.000477  0.000591
                                                         95% Confidence Interval for StDev
                            95% Confidence Intervals       0.000117  0.000197
             Mean
            Median
                   0.00048  0.00050  0.00052  0.00054  0.00056  0.00058  0.00060
              Figure 10.3 Histogram of case study data after Box--Cox transformation.


      where N is the sample size. Then

            ⎧                    2          2 2                   2
            ⎪ exp(1.2937 − 5.709A + 0.0186(A ) ),        if 13 > A > 0.600
            ⎪
              exp(0.9177 − 4.279A − 1.38(A ) ),          if 0.600 > A > 0.340
            ⎨                    2        2 2                       2
        p =                           2          2 2                2
            ⎪ 1 − exp(−8.318 + 42.796A − 59.938(A ) ),   if 0.340 > A > 0.200
            ⎪
              1 − exp(−13.436 + 101.14A − 223.73(A ) ),  if A < 0.200
            ⎩                          2          2 2        2
      Generally if the p-value of the test is greater than 0.05, we do not have enough evidence
      to reject the null hypothesis (that the data is normally distributed).
        Any statistical software can again easily do the above. Figure 10.3 was obtained by
      MINITAB 14, which provides both the histogram plot with a normal curve on top of
      it and the Anderson--Darling normality test on the same page. From the Anderson--
      Darling test we can conclude that the transformed data is normally distributed as the
      p-value was 0.597, way above the critical value of 0.05.



      10.2.1.3 Estimate the process capability using the transformed data
      Having successfully transformed the data, we can estimate the process capability us-
      ing the formula below with the transformed data and the transformed specification,
      91 −3  = 1.327 × 10 −6  (note that as the power is negative, the original upper specifica-
      tion limit becomes the lower specification limit):


                ¯ x − LSL
        C pk =           .
                  3σ
      For our example data set C pk = 1.19 (see Figure 10.4).
   145   146   147   148   149   150   151   152   153   154   155