Page 198 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 198

OTE/SPH
 OTE/SPH
                               Char Count= 0
                         2:58
          August 31, 2006
 JWBK119-12
                               Logistic Regression Approach                  183
      Table 12.7 Characteristics of female horseshoe crabs.
             Spine  Carapace                       Spine  Carapace
                                          ∗
      Color condition  width  Weight Response Color condition  width  weight Response
      (x C )  (x S )  (x Width )  (x Weight )  (y)  (x C )  (x S )  (x Width )  (x Weight )  (y)
      3        3      28.3   3050     1       3     3       28.7   3150     1
      4        3      22.5   1550     0       3     1       26.8   2700     1
      2        1      26     2300     1       5     3       27.5   2600     0
      4        3      24.8   2100     0       3     3       24.9   2100     0
      4        3      26     2600     1       2     1       29.3   3200     1
      3        3      23.8   2100     0       2     3       25.8   2600     0
      2        1      26.5   2350     0       3     2       25.7   2000     0
      4        2      24.7   1900     0       3     1       25.7   2000     1
      3        1      23.7   1950     0       3     1       26.7   2700     1
      4        3      25.6   2150     0       5     3       23.7   1850     0
      4        3      24.3   2150     0       3     3       26.8   2650     0
      3        3      25.8   2650     0       3     3       27.5   3150     1
      3        3      28.2   3050     1       5     3       23.4   1900     0
      5        2      21     1850     0       3     3       27.9   2800     1
      3        1      26     2300     1       4     3       27.5   3100     1
      2        1      27.1   2950     1       2     1       26.1   2800     1
      3        3      25.2   2000     1       2     1       27.7   2500     1
      3        3      29     3000     1       3     1       30     3300     1
      5        3      24.7   2200     0       4     1       28.5   3250     1
      3        3      27.4   2700     1       4     3       28.9   2800     1
      3        2      23.2   1950     1       3     3       28.2   2600     1
      2        2      25     2300     1       3     3       25     2100     1
      3        1      22.5   1600     1       3     3       28.5   3000     1
      4        3      26.7   2600     1       3     1       30.3   3600     1
      5        3      25.8   2000     1       5     3       26.2   1300     0
      ∗ 1, satellites present; 2, satellites absent.


      objective of the analysis is to predict whether there are any satellites present, the
      response, y, is assumed to be a binary variable of the following form:


             0,  if satellites present,
        y =
             1,  if satellites absent.
      Part of the original data set is reproduced in Table 12.7. The analysis in this example
      is conducted based on this partial data set.
        In an initial analysis, a single explanatory variable based on the carapace width
      is assumed. Since the response is binary and can be assumed to follow a Bernoulli
      distribution, a simple logistic regression model with a single explanatory variable of
      the following form is postulated:

             π Pres (x Width )

        ln                  = α + βx Width                                (12.15)
            1 − π Pres (x Width )
   193   194   195   196   197   198   199   200   201   202   203