Page 347 - GMAT 2017b_Neatb
P. 347

Computer Literacy Test 1



          33. How many different binary number can be stored in a   42. 1011/11
              register consisting of six switches?                   (A) 1000
              (A) 16                                                 (B) 0011
              (B) 32                                                 (C) 1001
              (C) 64                                                 (D) 10001
              (D) 128
                                                                 43. 1011.0101  ´  27 is represented in exponent form as
          34. The boolean function for the and operation is          (A) 0.10110100e00011
              (A) A  +  B  =  y                                      (B) 0.10110101e01011
              (B) A . B  =  y
                                                                     (C) 0.00001111e01011
              (C) A  -  B  =  y                                      (D) None  of  the above
              (D) A  =  A
                                                                 44. x  =  0.10101010e 0001010
          35. How many different binary numbers can be stored in a
              register with  4  switches?                            y  =  0.100010110e0000110
                                                                     x  -  y  =
              (A) 2 4
                                                                     (A) 0.101000111e1110000
                  4
              (B) 2  - 1                                             (B) 0.111111000e0001111
              (C) 2 4-1                                              (C) 0.101000100e0001010
                                                                     (D) None  of  the above
              (D) None  of  the above
          36. Decimal  number  6782  when  converted  to  9’s    45. x  =  0.11101001e0101010
              complement is                                          y  =  0.110101101e0100101
              (A) 3217                                               x  +  y  =
              (B) 3218                                               (A) 0.111011111e010101
              (C) 3319                                               (B) 0.000100000e000111
              (D) 3312                                               (C) either  A or  B
                                                                     (D) None  of  A  or  B
          37. 10’s complement of  x  can be defined as
              (A) (10 - x)  +  1                                 46. ASCII code takes how many number of  bits
              (B) (9  -  x)  +  1                                    (A) 6
              (C) (10  -  x)                                         (B) 8
              (D) both B and C                                       (C) 9
                                                                     (D) 7
          38. 10.00  -  01.11
              (A) 00.01                                          47. EDBCII  full form is
                                                                     (A) Extended  Binary  Code  of  Information
              (B) 00.11
                                                                        Interchange
              (C) 10.11
              (D) None of  the above                                 (B)  Exchange  data  in  Binary  Coded  Information
                                                                        Interchange
                                                                     (C) Enhanced  Decimal  to  Binary  Conversion
          39. Add (-5)  and  (-2)
              (A) 11001                                                 Information Interchange
              (B) 1001                                               (D) None  of  the above
              (C) 01001
                                                                                              10
              (D) None  of  the above                            48. Hexadecimal equivalent of  (23)  is
                                                                     (A) (18) 16
          40. 0101  +  0100                                          (B) (19) 16
              (A) 1001                                               (C) (17) 16
              (B) 1101                                               (D) (11)
              (C) 1111                                                     16
              (D) None  of  the above
                                                                 49. Binary equivalent of (7CDe3)  is
                                                                                            16
          41. 1101  ´  1011                                          (A) 0111  1101  0010  0001  1100
              (A) 10001111                                           (B) 0111  1100  1101  1110  0011
              (B) 1001100                                            (C) 0000 1111  0001  1100  0011
              (C) 11000111                                           (D) None  of  the  above
              (D) 10000000

                                                           350
   342   343   344   345   346   347   348   349   350   351   352