Page 54 - כתב עת מתמטי - גיליון 6
P. 54
Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. Ferrarello, D., Mammana, M. F., & Pennisi, M. (2014). From 2D to
3D geometry: Discovering, conjecturing, proving. In A.
(2012). Spatial anxiety relates to spatial skills Rogerson (Eds.), Proceedings of the 12th International
as a function of working memory in children. Conference of The Mathematics Education into the 21st
Century Project: The future of mathematics education
Quarterly Journal of Experimental Psychology, 65(3), in a connected world (pp 21-26). Montenegro. Re-
474-487. doi: 10.1080/17470218.2011.616214 trieved from http://directorymathsed.net/montenegro/
Ferrarello.pdf
Robichaux, R. R., & Guarino, A. J. (2000). Predictors of visu-
alization: A structural equation model. Paper Friedman, L. (1995). The space factor in mathematics: Gender dif-
ferences. Review of Educational Research, 65(1), 22-
presented at the annual meeting of the Mid-South Edu- 50. doi: 10.3102/00346543065001022
cational Research Association. Bowling Green, KY.
Gardner, H. (1983). Frames of mind: The theory of multiple intelli-
Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & gences. New York: Basic Books.
Means, B. M. (2000). Changing how and what Gibson, S., & Dembo, M. H. (1984). Teacher efficacy: A construct
children learn in school with computer-based validation. Journal of Educational Psychologiy, 76,
technologies. The Future of Children, 10(2), 76-101. 569-582. doi: 10.1037/0022-0663.76.4.569
Russell, G., & Bradley, G. (1997). Teachers’ computer anxi-
ety: Implications for professional develop- Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In
ment. Education and Information Technologies, 2(1), search of a framework. In L. Puig & A. Gutiérrez
(Eds.), Proceedings of the 20th conference of the Inter-
17-30. doi: 10.1023/A:1018680322904 national Group for the Psychology of Mathematics Ed-
ucation (Vol. 1, pp. 3-19). Valencia: Universidad de
Shulman, L. (1987). Knowledge and teaching: Foundations of the Valencia.
new reform. Harvard Educational Review, 57(1), 1-23.
doi: 10.17763/haer.57.1.j463w79r56455411 Hershkowitz, R., Parzysz, B., & van Dormolen, J. (1997). Shape
and space. In A. J. Bishop, K. Clements, C. Keitel, J.
Tuvi-Arad, I., & Gorsky, P. (2007). New visualization tools for Kilpatrick, & C. Laborde (Eds.), International hand-
learning molecular symmetry: A preliminary evalua- book of mathematics education (pp. 161-204). Dor-
tion. Chemistry Education Research and Practice, 8(1), drecht: Kluwer Academic Publishers.
61-72. doi: 10.1039/B6RP90020H
Kahle, D. K. B. (2008). How elementary school teachers’
Widder, M., & Gorsky, P. (2013). How students solve problems in mathematical self-efficacy and mathematics teaching
spatial geometry while using a software application for self-efficacy relate to conceptually and procedurally
visualizing 3D geometric objects. Journal of Comput- oriented teaching practices (Doctoral dissertation).
ers in Mathematics and Science Teaching, 32(1), 89- Ohio State University. Retrieved from https://etd.
120. ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_
NUM:osu1211122861
Widder, M., Berman, A., & Koichu, B. (2014). Dismantling Visual
Obstacles to Comprehension of 2-D Sketches Depict- Kali, Y., & Orion, N. (1996). Spatial abilities of high-
ing 3-D Objects. In C. Nicol, S. Oesterle, P. Liljedahl, school students in the perception of geologic structures.
Journal of Research in Science Teaching, 33(4), 369-
& D. Allan (Eds.), Proceedings of the 38th Con- 391. doi: 10.1002/(SICI)1098-
ference of the International Group for the
Psychology of Mathematics Education and 2736(199604)33:4<369::AID-TEA2>3.0.CO;2-Q
the 36th conference of the North American
Chapter of the Psychology of Mathematics Laborde, C. (2000). Dynamic geometry environments as a source
Education (Vol. 5, pp. 369-376). Vancouver, Canada: of rich learning contexts for the complex activity of
proving. Educational Studies in Mathematics, 44(1-2),
PME. 151-161. doi: 10.1023/A:1012793121648
Yeh, A., & Nason, R. (2004). VRMath: A 3D microworld for learn- Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly
ing 3D geometry. In L. Cantoni & C. McLoughlin Hills, CA: Sage. doi: 10.1037/0033-2909.86.5.889
(Eds.), Proceedings of EdMedia 2004: World Confer-
ence on Educational Multimedia, Hypermedia and McGee, M. G. (1979). Human spatial abilities: Psychometric stud-
Telecommunications (pp. 2183-2194). Chesapeake, ies and environmental, genetic, hormonal, and neuro-
VA: AACE. Retrieved from http://www.editlib. logical influences. Psychological Bulletin, 86(5), 889-
org/p/12323 918. doi: 10.1037/0033-2909.86.5.889
Yerushalmy, M., & Chazan, D. (1990). Overcoming visual obsta- Mohler, J. L., (2008). A review of spatial ability research. Engineer-
cles with the aid of the supposer. Educational Studies in ing Design Graphics Journal, 72(3), 19-30.
Mathematics, 21(3), 199-219. doi: 10.1007/
BF00305090 OECD. (2006). Assessing scientific, reading and mathematical lit-
eracy: A framework for PISA 2006. Retrieved from
http://www.oecd-ilibrary.org/education/assessing-sci-
e n t i fi c - r e a d i n g - a n d - m a t h e m a t i c a l - l i t e r a -
cy_9789264026407-en
OECD. (2007). ISA 2006 – Advanced Details. Retrieved from
http://www.oecd.org/pisa/pisa-2015-results-in-focus.
pdf
Parzysz, B. (1988). ‘Knowing’ vs. ‘seeing’: Problems of the plane
representation of space geometry figures. Educational
Studies in Mathematics, 19(1), 79-92. doi: 10.1007/
BF00428386
Ramey-Gassert, L., & Shroyer, M. G. (1992) Enhancing science
teaching self-efficacy in preservice elementary teach-
ers. Journal of Elementary Science Education, 4(1), 26-
34. doi: 10.1007/BF03173752
– מחקר ועיון בחינוך מתמטי6 │גיליון52