Page 481 - Deep Learning
P. 481

464                         References

            Cameron, K. A., Jacks, J. Z., & O’Brien, M. E. (2002). An experimental investigation
               of strategies for resisting persuasion. Current Research in Social Psychology, vol. 7,
               pp. 205–224. Electronic publication available at http://www.uiowa.edu/~grpproc/
               crisp/crisp.7.12.htm.
            Camilleri, K. (2006). Heisenberg and the wave-particle duality. Studies in History and
               Philosophy of Modern Physics, vol. 37, pp. 298–315.
            Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in
               other knowledge processes. Psychological Review, vol. 67, pp. 380–400.
            Campitelli, G., & Gobet, F. (2005). The mind’s eye in blindfold chess. European Journal
               of Cognitive Psychology, vol. 17, pp. 23–45.
            Caprara,  G.  V.,  &  Cervone,  D.  (2000).  Personality:  Determinants,  dynamics,  and
               potentials. Cambridge, UK: Cambridge University Press.
            Caramazza, A., McCloskey, M., & Green, B. (1980). Naive beliefs in “sophisticated”
               subjects:  Misconceptions  about  trajectories  of  objects.  Cognition,  vol.  9,
               pp. 117–123.
            Caramazzo, A., & Shelton, J. A. (1998). Domain-specific knowledge systems in the
               brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, vol.
               10, pp. 1–34.
            Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from
               past experience. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
               learning: An artificial intelligence approach (pp. 137–161). Palo Alto, CA: Tioga.
            ———. (1986). Derivational analogy: A theory of reconstructive problem solving and
               expertise acquisition. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
               Machine  learning:  An  artificial  intelligence  approach  (vol.  2,  pp.  371–392).  Los
               Altos, CA: Morgan Kauffmann.
            Carlson,  W.  B.,  &  Gorman,  M.  E.  (1992).  A  cognitive  framework  to  understand
               technological  creativity:  Bell,  Edison,  and  the  telephone.  In  R.  J.  Weber  &
               D. N. Perkins (Eds.), Inventive minds: Creativity in technology (pp. 48–79). New
               York: Oxford University Press.
            Carnie, A. (2008). Constituent structure. New York: Oxford University Press.
            Carroll,  J.  B.  (1993).  Human  cognitive  abilities:  A  survey  of  factor-analytic  studies.
               Cambridge, UK: Cambridge University Press.
            Carroll, P. B., & Mui, C. (2008). Billion-dollar lessons: What you can learn from the most
               inexcusable business failures of the last 25 years. New York: Portfolio.
            Carroll, S. B. (2005). Endless forms most beautiful: The new science of evo devo and the
               making of the animal kingdom. New York: Norton.
            Casper, B. M, & Noer, R. J. (1972). Revolutions in physics. New York: Norton.
            Catrambone,  R.  (1995).  Aiding  subgoal  learning:  Effects  on  transfer.  Journal  of
               Educational Psychology, vol. 8, pp. 5–17.
            ———. (1998). The subgoal learning model: Creating better examples so that students
               can solve novel problems. Journal of Experimental Psychology: General, vol. 127,
               pp. 355–376.
            Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment.
               Journal of Educational Psychology, vol. 54, pp. 1–22.
            Cavalli-Sforza, L. L. (2000). Genes, peoples, and languages (M. Seielstad, Trans.). New
               York: Farrar, Straus and Giroux.
   476   477   478   479   480   481   482   483   484   485   486